当前位置:东华养生网 > 运动养生 > 正文

肌肉骨骼大全(肌肉骨骼app安卓版)

  分类:运动养生  发布者:yansheng  发布时间:
好多朋友想了解肌肉骨骼大全的一些知识,在此小美给大家介绍一些肌肉骨骼大全相关的知识,大家可参考一下骨骼系..

好多朋友想了解肌肉骨骼大全的一些知识,在此小美给大家介绍一些肌肉骨骼大全相关的知识,大家可参考一下

骨骼系统详细资料大全

骨骼系统(skeletal system) 是指脊椎动物的器官系统之一。包括身体的各种骨骼、关节与韧带。由来源于中胚层的间充质细胞增殖分化而来。有支持躯体、保护体内重要器官、供肌肉附着、作运动杠杆等作用,部分骨骼还有造血、维持矿物质平衡的功能。按所在部位不同,骨骼系统分为中轴骨骼和附肢骨骼两部分。无脊椎动物中的节肢动物有几丁质的外骨骼,其功能与脊椎动物的骨骼系统相似。

基本介绍 中文名 :骨骼系统 外文名 :Skeletal system 定义 :生物体提供支持作用的生命系统 组成 :骨骼和软组织 形状 :蜂巢状立体结构 成人骨头数量 :206块骨 小孩 :217~218块骨 结构,分类,外骨骼,内骨骼,水骨骼,功能,保护方法, 结构 骨骼 是组成脊椎动物内骨骼的坚硬器官,功能是运动、支持和保护身体;制造红血球和白血球;储藏矿物质。骨骼由各种不同的形状组成,有复杂的内在和外在结构,使骨骼在减轻重量的同时能够保持坚硬。骨骼的成分之一是矿物质化的骨骼组织,其内部是坚硬的蜂巢状立体结构;其他组织还包括了骨髓、骨膜、神经、血管和软骨。 人体的骨骼具有支撑身体的作用,其中的硬骨组织和软骨组织皆是人体结缔组织的一部分(而硬骨是结缔组织中唯一细胞间质较为坚硬的)。成人有206块骨头,而小孩的较多有213块,由于诸如头骨会随年纪增长而愈合,因此成人骨骼个数少个一两块或多一两块都是正常的。另外,成人有28~32个牙(恒久齿),多的一般称为智齿,小孩乳齿20颗。骨与骨之间的间隙一般称之为关节,除了少部分的不动关节可能以软骨连线之外,大部分是以韧带连线起来的。关节可分成不动关节、可动关节以及难以被归类的中间型可称为少动关节。光有骨骼是不具有让身体运动的作用的,一般俗称的运动系统(这种分类其实是不严谨的,因为通常骨骼已经可以被称做骨骼系统,包含软骨硬骨以及连结骨与骨的韧带甚至包含关节部分(关节液,因为关节是位置不是细胞更不是组织)。所谓的运动系统,应该是被译作"超系统"的super system之一,人体一般分为六种super system)还包含了肌肉(骨骼肌)系统。骨骼肌是横纹肌,可随意志伸缩,一般一种"动作"是由一对肌肉对两块骨头(一个关节)作拮抗,而肌肉末端以肌腱和经过关节的下一个骨头连线。其实韧带和肌腱也是结缔组织,所以运动(超)系统中只有肌肉组织跟结缔组织,顶多再包含骨髓内的神经及控制肌肉的运动神经属于神经组织。 成人有206块骨,骨经连线形成骨骼.人体骨骼两侧对称,中轴部位为躯干骨(51块),其顶端是颅骨(29块),两侧为上肢骨(64块)和下肢骨(62块)。 @骨骼中所包含的组织: 1.结缔组织 硬骨、软骨、纤维性结缔组织、血管、血液。 2.神经组织 @骨骼的功用 支持、保护、运动、造血〈红骨髓〉、储存脂质 〈黄骨髓〉及矿物质。 @骨骼的种类:长骨、短骨、扁平骨、不规则骨、圆骨〈种子骨〉 1.长骨----肱骨(humerus)、股骨(femur)〈长比宽=非常大〉 2.短骨----腕骨(carpals)〈长比宽=非常小,近似立方形〉 3.扁平骨----肩胛骨(scapula)〈板状〉 4.不规则骨----脊柱骨 (vertebra) 5.圆骨〈种子骨〉----膑骨(patella)〈通常很小,位于关节内层〉 骨骼的大体解剖:中轴骨骼(the axial skeleton)、四肢骨骼 (the appendicular skeleton) 中轴骨骼--头骨---颅顶骨----额骨、顶骨、枕骨、颞骨、蝶骨、筛骨。 颜面骨(facial bones)----上颚骨、下颚骨、颧骨、鼻骨、腭骨、 涙骨、犁骨、下鼻甲。 ---舌骨(hyoid bone)(1) ---听小骨(ossicles)(6) --脊柱(vertebral column)---颈椎、胸椎、腰椎、荐椎、尾椎。 --胸骨(sterum) 各部重点:1.枕骨 (1)由项平面的鳞部不成对部份:成对的外侧质块和不成对的 基底部组成。 (2)枕骨大孔为颅腔和脊椎管之交通所在。 (3)舌下神经管。 2.颞骨外侧只看到鳞状部。颧骨的颞突+颞骨的颧突=形成下颔枝部 的关节(颞颚关节)及颧骨弓 3.蝶骨大翼小翼之间是一三角形裂缝称眶上裂,有动眼神经(3)、 滑车神经(4)、外展神经(6)及三叉神经的眼支(第一支)通过。 大翼上有三孔,由上而下分别为:圆孔(三叉第二支通过)、 卵圆孔(三叉第三支通过)、棘孔。 4.筛骨(1)可区分为外侧质块、垂直板及筛板。 (2)由筛板向上的一三角形突起称为鸡冠,为脑膜附着点。 5. 上颚骨上颚骨及蝶骨间有一裂缝称眶下裂 6. 下颚骨 (1)髁状突和颞骨的下颚窝及关节结节形成关节,称为颞颚关节(可动)。 (2)下颚舌骨线为下颚舌骨肌起始。 (3)头骨中唯一可动。 7.胸骨胸骨柄、胸骨体、剑突。 分类 骨骼系统通常分三种-外骨骼、内骨骼和水骨骼。共有206块,但是水骨骼在分类时也可以和其他两种分开来,因为其没有坚硬的支持结构。 外骨骼 在骨骼大小相同的情况下,大型的外骨骼结构与内骨骼相比所能支持的重量相对较小,因此,许多大型动物,例如脊椎动物具有内骨骼结构。外骨骼动物例如节肢动物、软体动物和一些昆虫,它们的骨骼是一层保护内部器官的壳。 节足动物和软体动物都具有外骨骼。由于外骨骼限制了动物的生长,这些外骨骼动物找到了不同的解决办法。大部分软体动物具有石灰质的壳,并且随着生长,壳的直径增大,形状不变。节肢动物在生长的过程中蜕去旧皮,这个过程称为蜕皮。生出新的外骨骼后,外骨骼通过不同的方式硬化(例如石灰质、骨质)。 内骨骼 内骨骼由体内坚硬的组织构成,由肌肉系统提供动力。矿物质化或骨质化的内骨骼被称为骨,例如人类和哺乳动物的骨骼。软骨是骨骼系统中另一重要的组成部分,起支持和补充骨骼的作用。人的耳和鼻由软骨定型。有些动物的骨骼完全由软骨构成而没有骨质化的骨,例如鲨鱼。骨于其他坚硬的结构由韧带相互连线,而与肌肉系统之间由肌腱连线。 较高等的生物,例如哺乳类、爬虫类、鸟类等,才有内骨骼,大多数都是脊索动物门的成员。 水骨骼 水骨骼则好像是充满水的气球。腔肠动物(例如水母、珊瑚虫等)和环节动物(例如水蛭)这些具有水骨骼的动物体腔内充满液体. 提供静水压支撑身体,能通过收缩液囊周围的肌肉实现移动,例如蚯蚓通过改变身体的形状向前移动。 功能 骨骼的最主要功能,为支撑保持体形。因此海洋生物的骨骼不及陆地动物,是因为海洋提供了浮力支撑。动物进化而迁往陆地,就开始形成坚固的骨骼结构。另一方面,骨骼也提供肌肉连线面,透过关节,协助肌肉产生运动。骨骼也为内部软组织结构提供保护。外骨骼包裹整个身体,容纳所有器官,保护度较高,但行动不便,也限制了生物的大小,因此只见于较低等生物。而较高等生物则具有内骨骼,虽然保护性不及外骨骼,但也能保护一些重要器官,如:大脑、脊髓和心脏,行动方便快速,并且体形较大。一些内骨骼更有在红骨髓内产生血液细胞的能力。 透视人体骨骼 骨骼的进化可能与它的另一个重要功能有关,即骨骼的支撑功能,骨骼作为支撑系统使生物体的结构更符合力学原则。关于支撑的重要性,具体有下面几项:

(1)多细胞生物的软组织、软躯体若没有硬的支撑系统则难以增大体积;

(2)支撑系统使躯体内的重要器官在空间上得以合理地配置,并保持相对稳定的空间位置,实现整体的功能谐调;

(3)支撑系统使动物的运动器官得以发展,并最终使动物能脱离水环境;

(4)支撑系统在植物中的发展使植物能扩大表面积,并向高处获得空间,最终使植物能向陆地发展。 骨骼在进化过程中,其防护功能与支撑功能互相结合,例如无脊椎动物外骨骼既是支撑系统,又是防护系统。脊椎动物骨骼的主要功能是支撑,其防护功能让位于皮肤。 保护方法 骨骼保护从小开始 孩子在发育过程中身体骨骼的各大部位最容易变形,这就犹如西班牙总部技术人员形象的比喻:“中国的盆景是怎样造出来的,那就是在植物幼嫩期通过铁丝去固定它的造型而形成的。因此,我们需要从小开始注意我们的孩子的骨骼健康。 补充足量的钙 身体里99%的钙都储存在骨头和牙齿 里,它们支撑着你的身体;而另外的1%则在血液里,这1%也扮演着相当重要的角色,例如控制肌肉收缩、血液凝结、荷尔蒙分泌,这些对于生命都非常重要。而 如果你的饮食中钙不够的话,你的身体就需要从骨骼中汲取钙的“存量”,以维持血液中的钙含量。天长地久,这种稀缺就导致了骨骼的疏松。其实日常饮食就是最 好的补钙渠道。一杯牛奶或优酪乳含300毫克的钙,一天喝3杯,钙的量就够了。一些绿叶蔬菜,例如羽衣甘蓝也含有丰富的钙,还有豆浆、高钙饮料也是。 选择合适的运动 理论上说,所有运动都有利于健康,但并不是所有的运动对增进骨骼的健康同等有效。最好选择那些承重运动,例如走路、跳舞、慢跑、爬楼梯或举重。因为当你跳跃、奔跑或举重时,你的骨骼承受了压力,你的身体就会受到一个需要增强骨骼的信号,并开始制造新的细胞以强壮骨骼。但是在骨骼比较脆弱的儿童期和第二次生长突增期负重锻炼要适度,不然容易影响身高的增长。 多进食含维生素D的食物 维生素D的作用相当于钙类稳定剂,它能促进我们吸收食物中的钙,并锁定到骨骼中。维生素D的来源有两个:太阳,紫外线与皮肤中的化学成分相互作用产生维生素D;食物,包括蛋黄、鲑鱼、鲔鱼、动物肝脏等食物中都含有维生素D。

运动系统详细资料大全

运动系统由骨、关节和骨骼肌三种器官组成。骨以不同形式连结在一起,构成骨骼。形成了人体的基本形态,并为肌肉提供附着,在神经支配下,肌肉收缩,牵拉其所附着的骨,以可动的骨连结为枢纽,产生杠杆运动。运动系统主要的功能是运动。简单的移位和高级活动如语言、书写等,都是由骨、骨连结和骨骼肌实现的。运动系统的第二个功能是支持。构成人体基本形态,头、颈、胸、腹、四肢,维持体姿。运动系统的第三个功能是保护。由骨、骨连结和骨骼肌形成了多个体腔,颅腔、胸腔、腹腔和盆腔,保护脏器。从运动角度看,骨是被动部分,骨骼肌是动力部分,关节是运动的枢纽。能在体表看到或摸到的一些骨的突起或肌的隆起,称为体表标志。它们对于定位体内的器官、结构等具有标志性意义。

基本介绍 中文名 :运动系统 外文名 :skeletal system 组成 :骨、骨连结和骨骼肌 功能 :运动系统主要的功能是运动和支持 拼音 :Yun Dong Xi Tong 基本介绍,主要功能,运动,支持,保护,骨组成部分,综述,长骨,短骨,扁骨,不规则骨,骨的构造,综述,骨质,骨膜,骨髓,骨的物化特征,骨的表面标志,骨的发生和发育,综述,膜化骨,软骨化骨,肌的辅助装置,筋膜,腱鞘和滑液囊,滑液囊,主要器官,骨骼,肌肉,运动机制, 基本介绍 广义的运动系统由中枢神经系统,周围神经和神经-肌接头部分;骨骼肌肉;心肺和代谢支持系统组成。 狭义的运动系统由 骨 、关节和骨骼肌 三种器官组成。骨与不同形式(不活动、半活动或活动)的骨连线联结在一起,构成骨骼(skeleton),形成了人体体形的基础,并为肌肉提供了广阔的附着点。肌肉是运动系统的主动动力装置,在神经支配下,肌肉收缩,牵拉其所附着的骨,以可动的骨连线为枢纽,产生杠杆运动。 主要功能 运动 运动系统顾名思义其首要的功能是运动。人的运动是很复杂的,包括简单的移位和高级活动如语言、书写等,都是以在神经系统支配下,肌肉收缩而实现的。即使一个简单的运动往往也有多数肌肉参加,一些肌肉收缩,承担完成运动预期目的角色,而另一些肌肉则予以协同配合,甚或有些处于对抗地位的肌肉此时则适度放松并保持一定的紧张度,以使动作平滑、准确,起着相辅相成的作用。 运动系统 支持 运动系统的第二个功能是支持,包括构成人体体形、支撑体重和内部器官以及维持体姿。人体姿势的维持除了骨和骨连线的支架作用外,主要靠肌肉的紧张度来维持。骨骼肌经常处于不随意的紧张状态中,即通过神经系统反射性地维持一定的紧张度,在静止姿态,需要互相对抗的肌群各自保持一定的紧张度所取得的动态平衡。 保护 运动系统的第三个功能是保护,众所周知,人的躯干形成了几个体腔,颅腔保护和支持着脑髓和感觉器官;胸腔保护和支持着心、大血管、肺等重要脏器;腹腔和盆腔保护和支持着消化、泌尿、生殖系统的众多脏器。这些体腔由骨和骨连线构成完整的壁或大部分骨性壁;肌肉也构成某些体腔壁的一部分,如腹前、外侧壁,胸廓的肋间隙等,或围在骨性体腔壁的周围,形成颇具弹性和韧度的保护层,当受外力冲击时,肌肉反射性地收缩,起著缓冲打击和震荡的重要作用。 运动系统 骨组成部分 综述 骨bone是以骨组织为主体构成的器官,是在结缔组织或软骨基础上经过较长时间的发育过程(骨化)形成的。成人骨共206块,依其存在部位可分为颅骨、躯干骨和四肢骨。各部分骨的名称、数目见下页表。 骨的形状,人体的骨由于存在部位和功能不同,形态也各异。按其形态特点可概括为下列四种: 运动系统 长骨 long bone主要存在于四肢,呈长管状。可分为一体两端。体又叫骨干,其外周部骨质致密,中央为容纳骨髓的骨髓腔。两端较膨大,称为骺。骺的表面有关节软骨附着,形成关节面,与相邻骨的关节面构成运动灵活的关节,以完成较大范围的运动。 短骨 short bone 为形状各异的短柱状或立方形骨块,多成群分布于手腕、足的后半部和脊柱等处。短骨能承受较大的压力,常具有多个关节面与相邻的骨形成微动关节,并常辅以坚韧的韧带,构成适于支撑的弹性结构。 扁骨 flat bone呈板状,主要构成颅腔和胸腔的壁,以保护内部的脏器,扁骨还为肌肉附着提供宽阔的骨面,如肢带骨的肩胛骨和髋骨。 不规则骨 irregular bone 形状不规则且功能多样,有些骨内还生有含气的腔洞,叫做含气骨,如构成鼻旁窦的上颌骨和蝶骨等。 骨的构造 综述 骨以骨质为基础,表面复以骨膜,内部充以骨髓,分布于骨的血管、神经,先进入骨膜,然后穿入骨质再进入骨髓。 运动系统 骨质 骨质bone substance由骨组织构成。骨组织bony tissue含大量钙化的细胞间质和多种细胞-即骨细胞、骨原细胞、成骨细胞和破骨细胞。骨细胞数量最多,位于骨质内,其余的则位于骨质靠近骨膜的边缘部。骨质由于结构不同可分为两种:一种由多层紧密排列的骨板构成,叫做骨密质;另一种由薄骨板即骨小梁互相交织构成立体的网,呈海绵状,叫做骨松质。骨密质质地致密,抗压抗纽曲性很强;而骨松质则按力的一定方向排列,虽质地疏松但却体现出既轻便又坚固的性能,符合以最少的原料发挥最大功效的构筑原则。不同形态的骨,由于其功能侧重点不同,在骨密质和骨松质的配布上也呈现出各自的特色。以保护功能为主的扁骨,其内外两面是薄层的骨密质,叫做内板和外板,中间镶夹着当量的骨松质,叫做板障,骨髓即充填于骨松质的网眼中。以支持功能为主的短骨和长骨的骨骺,外周是薄层的骨密质,内部为大量的骨松质,骨小梁的排列显示两个基本方向,一是与重力方向一致,叫做压力曲线;另一则与重力线相对抗而适应于肌肉的拉力,叫做张力曲线,二者构成最有效的承担重力的力学系统。以运动功能见长的长管状骨骨干,则有较厚的骨密质,向两端逐渐变薄而与骺的薄层骨密质相续,在靠近骨骺处,内部有骨松质充填,但骨干的大部分骨松质甚少,中央形成大的骨髓腔。在承力过程中,长骨骨干的骨密质与骨骺的骨松质和相邻骨的压力曲线,共同构成与压力方向一致的统一功能系统。 骨质在生活过程中,由于劳动、训练、疾病等各种因素的影响,表现出很大的可塑性,如芭蕾舞演员的足跖骨骨干增粗,骨密质变厚;卡车司机的掌骨和指骨骨干增粗;长期卧床的患者,其下肢骨小梁压力曲线系统变得不明显等。 骨膜 骨膜periosteum由致密结缔组织构成,被覆于除关节面以外的骨质表面,并有许多纤维束伸入于骨质内。此外,附着于骨的肌腱、韧带于附着部位都与骨膜编织在一起。因而骨膜与骨质结合甚为牢固。骨膜富含血管、神经,通过骨质的滋养孔分布于骨质和骨髓。骨髓腔和骨松质的网眼也衬著一层菲薄的结缔组织膜,叫做骨内膜endosteum。骨膜的内层和骨内膜有分化成骨细胞和破骨细胞的能力,以形成新骨质和破坏、改造已生成的骨质,所以对骨的发生、生长、修复等具有重要意义。老年人骨膜变薄,成骨细胞和破骨细胞的分化能力减弱,因而骨的修复机能减退。 运动系统 骨髓 骨髓bone marrow是柔软的富于血管的造血组织,隶属于结缔组织。存在于长骨骨髓腔及各种骨骨松质的的网眼中,在胚胎时期和婴幼儿,所有骨髓均有造血功能,由于含有丰富的血液,肉眼观呈红色,故名红骨髓。约从六岁起,长骨骨髓腔内的骨髓逐渐为脂肪组织所代替,变为黄红色且失去了造血功能,叫做黄骨髓。所以成人的红骨髓仅存于骨松质的网眼内. 骨的物化特征 骨不仅坚硬且具一定弹性,抗压力约为15kg/mm2,并有同等的抗张力。这些物理特性是由它的化学成分所决定的。骨组织的细胞间质由有机质和无机质构成,有机质由骨细胞分泌产生,约占骨重的1/3,其中绝大部分(95%)是胶原纤维,其余是无定形基质,即中性或弱酸性的糖胺多糖组成的凝胶。无机质主要是钙盐,约占骨重的2/3,主要成分为羟基磷灰石结晶,是一种不溶性的中性盐,呈细针状,沿胶原纤维的长轴排列。将骨进行锻烧,去除其有机质,虽然仍可保持原形和硬度,但脆而易碎。若将骨置于强酸中浸泡,脱除其无机质(脱钙),该骨虽仍具原形,但柔软而有弹性,可以弯曲甚至打结,松开后仍可恢复原状。 有机质与无机质的比例随年龄增长而逐渐变化,幼儿骨的有机质较多,柔韧性和弹性大,易变形,遇暴力打击时不易完全折断,常发生柳枝样骨折。老年人有机质渐减,胶原纤维老化,无机盐增多,因而骨质变脆,稍受暴力则易发生骨折。 骨的表面标志 骨的表面由于肌腱、肌肉、韧带的附着和牵拉,血管、神经通过等因素的影响,形成了各种形态的标志,有些标志可以从体表清楚的看到或摸到,成为临床诊断和治疗中判断人体结构位置的重要根据。 (一)骨面的突起:由于肌腱或韧带的牵拉,骨的表面生有程度不同的隆起,其中明显突出于骨面的叫突;末端尖的叫棘;基底部较广逐渐凸隆的叫隆起,其表面粗糙不平的叫粗隆或结节,有方向扭转的粗隆叫转子;长线形的高隆起叫嵴;低而粗涩的叫线。 (二)骨面的凹陷:由于与邻位器官、结构相接触或肌肉附着的影响而形成。大而浅的光滑凹面叫窝,略小的凹叫小窝或小凹;长的叫沟;浅的如手指的压痕叫压迹。 (三)骨的腔洞:由于容纳某些结构或空气,或由于某些结构穿行所形成。一般将较大的空间称为腔、窦、房,小者叫小房;长的骨性通道叫管;腔或管的开口叫口或孔,边缘不完整的孔叫裂孔。 运动系统 (四)骨端的标志:骨端圆形的膨大叫头或小头,多为被覆著软骨的关节面,头下方较狭细处叫颈;椭圆形的膨大叫髁;髁的最突出部分叫上髁。 此外,较平滑的骨面叫面,是肌肉的附着处;骨的边缘称缘,缘的缺口或凹入都叫切迹,是血管、神经或肌腱的通过处。 骨的发生和发育 综述 骨发生于胚胎时的间充质。约在胎龄第8周,脊索的周围以及其它部分由间充质分化出胚性结缔组织,形成膜性骨。以后膜性骨的大部分被软骨所取代,再由软骨发展成骨;小部分则直接从膜性骨衍化为骨。由结缔组织膜或软骨衍化为骨的过程叫骨化。这一过程从胚胎时期开始,直至生后骨的发育完成为止。由膜骨化的叫原骨;由软骨衍化的骨叫次骨。 膜化骨 颅顶骨和面颅骨的发生属于此型。胚胎时期膜性骨的一定部位的细胞,分化出成团的成骨细胞,成骨细胞产生胶原纤维和基质,基质内钙盐渐沉积,形成骨组织小岛,叫做骨化中心。再由此中心向周围生成辐射状的骨梁,骨梁再生小梁并互相结合成网,网眼内充以胚性造血组织。膜性骨的表层部分形成骨膜,骨膜下还分化出一种破骨细胞,在成骨细胞不断造骨的同时,破骨细胞破坏已建成的骨质并将之吸收,在这样不断造骨又不断破坏骨的相反相成的矛盾运动中,骨不断生长的同时被改建和重建,使骨达到成体的形态。颅骨一般均由几个骨化点骨化然后愈合成一骨,其骨质的外层不断生成,内层不断破坏、吸收和改建,使颅腔的容积不断扩大。 软骨化骨 四肢骨(锁骨除外)和颅底骨的发生属于此型。胚胎早期在膜性骨的基础上形成与成体骨形状相似的软骨性骨,表面复以软骨膜。软骨化骨由软骨膜和软骨内同时进行。软骨膜化骨形成骨密质及其外层的骨膜;软骨内骨化形成骨松质及充填于其内的骨髓。长管状骨的骨化,首先是软骨体中间部的软骨膜内层分化出成骨细胞,由它产生细胞间质并有钙盐沉积,形成圆筒状的骨领。此时间充质和血管侵入软骨体中央,分化出造骨与破骨细胞,形成初级骨化中心,并由此向两端不断发展,在最初骨化中心部位由于破骨细胞将骨质破坏、吸收而产生空腔,即骨髓腔,侵入的间充质转化为红骨髓。到降生前后,软骨的两端也出现骨化中心,叫初级骨化中心,先进行软骨内化骨,然后进行软骨膜化骨,形成骨骺。当骨干和骨骺两者的骨化都接近完成时,中间仍保留一层软骨,叫做骺软骨。骨的发育基于两种机制:一是骺软骨不断增生,骨干端又不断骨化,使骨得以不断长长,直至20岁左右,骺软骨不再增长也被骨化,骨干与骨骺相连,二者的嵌接处形成一条粗糙的骺线;另一是骨膜内层不断地层层造骨与改建,其内部骨髓腔也不断造骨、破骨与改建,从而使骨干不断增粗、骨髓腔也不断的扩大。由于造骨和破骨互相矛盾互相制约的作用,使骨在长长变粗的同时,依据内、外环境诸多因素的影响,骨质的构筑得到不断的改建,使骨达到了以最少的原料而具有高度的韧性和硬度统一体的效能。短骨的骨化过程与长骨骨骺相似,但首先从软骨膜开始化骨,然后再进行软骨内化骨。 运动系统 肌的辅助装置 筋膜 筋膜fascia可分为浅、深两层。浅筋膜superficial fascia为分布于全身皮下层深部的纤维层,有人将皮下组织全层均列属于浅筋膜,它由疏松结缔组织构成。内含浅动、静脉、浅淋巴结和淋巴管、皮神经等,有些部位如面部、颈部生有皮肌,胸部的乳腺也在此层内。 深筋膜profundal fascia又叫固有筋膜,由致密结缔组织构成,遍布全身,包裹肌肉、血管神经束和内脏器官。深筋膜除包被于肌肉的表面外,当肌肉分层时,固有筋膜也分层。在四肢,由于运动较剧烈,固有筋膜特别发达、厚而坚韧,并向内伸入直抵骨膜,形成筋膜鞘将作用不同的肌群分隔开,叫做肌间隔。在体腔肌肉的内面,也衬以固有筋膜,如胸内、腹内和盆内筋膜等,甚而包在一些器官的周围,构成脏器筋膜。一些大的血管和神经干在肌肉间穿行时,深筋膜也包绕它们,形成血管鞘。筋膜的发育与肌肉的发达程度相伴行,肌肉越发达,筋膜的发育也愈好,如大腿部股四头肌表面的阔筋膜,厚而坚韧。筋膜除对肌肉和其它器官具有保护作用外,还对肌肉起约束作用,保证肌群或单块肌的独立活动。在手腕及足踝部,固有筋膜增厚形成韧带并伸入深部分隔成若干隧道,以约束深面通过的肌腱。在筋膜分层的部位,筋膜之间的间隙充以疏松结缔组织,叫做筋膜间隙,正常情况下这种疏松的联系保证肌肉的运动,炎症时,筋膜间隙往往成为脓液的蓄积处,一方面限制了炎症的扩散,一方面浓液可顺筋膜间隙的通向蔓延。 运动系统 腱鞘和滑液囊 一些运动剧烈的部位如手和足部,长肌腱通过骨面时,其表面的深筋膜增厚,并伸向深部与骨膜连线,形成筒状的纤维鞘,其内含由滑膜构成的双层圆筒状套管,套管的内层紧包在肌腱的表面,外层则与纤维鞘相贴。两层之间含有少量滑液。因此肌腱既被固定在一定位置上,又可滑动并减少与骨面的摩擦。在发生中滑膜鞘的两层在骨面与肌腱间互相移行,叫做腱系膜,发育过程中腱系膜大部分消失,仅在一定部位上保留,以引导营养肌腱的血管通过。 滑液囊 在一些肌肉抵止腱和骨面之间,生有结缔组织小囊,壁薄,内含滑液,叫做滑液囊synovial bursa,其功能是减缓肌腱与骨面的摩擦。滑液囊有的是独立封闭的,有的与邻近的关节腔相通,可视为关节囊滑膜层的突出物。 主要器官 骨骼 躯体的支架,由骨借关节和韧带互相连线而成。供肌肉附着,在运动中起杠杆作用。骨骼的形态和结构与其在运动中所担负的工作相适应。可分为:①主轴骨骼。由头骨、椎骨、肋骨和胸骨组成。头骨互相连线构成头颅。每一体节中有一椎骨,短而有较多的突起,互相连线而成脊柱,是躯体的主轴。颈部、胸部、腰部、荐部和尾部的椎骨分别称为颈椎、胸椎、腰椎、荐椎和尾椎。荐椎结合成荐骨,有利于接受来自后肢的推动躯体前进的力量。肋骨、胸骨和胸椎构成胸廓。②前肢骨骼。有肩胛骨、肱骨、桡骨、尺骨、腕骨、掌骨和指节骨。肩胛骨为扁骨,位于胸侧壁前部,具有宽大的面积以供肌肉附着。肱骨为管状长骨,位于上臂。桡骨和尺骨并列于前臂,也是管状长骨。马、牛、羊的尺骨已退化并与桡骨结合,仅其近端发达,称为鹰嘴。腕骨为一群短骨,分两排砌合一起,参与构成腕关节。掌骨为管状长骨,马有3枚、中间的1枚发达,两侧的2枚较小;牛、羊有2枚,1枚发达,实由2枚掌骨互相结合而成,另1枚很小;猪有4枚,中间的2枚发达,两侧的2枚较小。指骨包括指节骨和籽骨,马仅1指,牛、羊有2指,猪有4指,各有指节骨 3枚。③后肢骨骼。有髋骨、股骨、髌骨、胫骨、腓骨、跗骨、跖骨和趾节骨。髋骨为扁骨,由髂骨、耻骨和坐骨结合而成,有宽大的面积供肌肉附着。左右髋骨与荐骨连合构成骨盆。股骨位于大腿,为管状长骨。髌骨位于膝关节,为籽骨。胫骨位于小腿,为管状长骨。腓骨细长,与胫骨并列,在马、牛、羊已退化,附着于胫骨。跗骨为一群短骨,分为3排砌合一起,参与构成跗关节。跖骨和趾节骨分别与掌骨和指节骨相同。 运动系统 关节 骨间互相连线的结构。有的关节结构简单,骨间的纤维组织或软骨组织连线很紧,相互之间基本上不能移动。有的关节结构较复杂,骨与骨借关节囊和韧带连结,相互之间可以移动。关节囊外层为纤维膜;内层为滑膜,能分泌滑液以减少摩擦力(图1)。滑膜关节依关节面的形状和活动方式可分为:可滑动的平关节,如腕掌关节;可作伸屈运动的单轴关节,如肘关节;可作旋转运动的单轴关节,如寰枢关节;可作伸、屈、内收、外展运动的双轴关节;可作伸、屈、内收、外展、环行和旋转运动的多轴关节,如髋关节。四肢的关节大多为进行伸屈运动的单轴关节。肩关节和髋关节在结构上为多轴关节;但马、牛、羊、猪的髋关节主要进行伸屈运动,肩关节只能进行伸屈运动。头部关节大多不能活动,但颞下颌关节能进行伸屈和滑动运动。脊柱的连线特殊,椎骨的椎弓由滑膜关节相连,椎体由纤维软骨相连。 肌肉 参与构成运动系统的肌肉属横纹肌,为运动系统的收缩组织,能以关节为支点,牵动被其所附着的骨而产生运动。运步和推动躯体前进是家畜运动的主要形式。与此有关的肌肉主要是脊柱肌,主要作用于脊柱和头颅,它的一些肌肉的收缩,具有抬头,稳定脊间关节和传导来自后股的力量的作用,从而推动躯体前进。分布于前、后肢的各种肌肉,各有不同的运动功能,起著协调和共济作用。如前肢数目多而较大的左右腹侧锯肌,具有悬吊作用,可缓冲震动。臂头肌具有提起前肢向前迈步的功能。后肢的臀股肌相当发达,为推动躯体前进的主力。 肌肉结构的中部称肌腹,由肌纤维构成,它能收缩和舒张;两端为腱,属纤维组织。肌肉收缩所产生的力量与肌纤维的数量成正比,缩短的幅度与肌纤维的长度成正比。肌纤维一般能缩短其原来长度的1/3~1/2。肌纤维中充满肌质网、线粒体、肌糖元和排列整齐的肌原纤维。肌原纤维由在电镜下表现为交错排列于暗带和明带的粗肌丝和细肌丝构成。位于暗带的粗肌丝含肌球蛋白;细肌丝含肌动蛋白,有一段位于明带,另一段伸入暗带并交错地位于粗肌丝之间(图 2)。当神经冲动传到时,粗肌丝的腺苷三磷酸酶被激活而使腺苷三磷酸分解产生能量;并使肌球蛋白与肌动蛋白结合成肌动球蛋白复合物,细肌丝因而全部拉进暗带,形成肌原纤维收缩。神经冲动停止时,则呈现一系列与此方向相反的活动。任何一个动作都是在神经统一支配下一群肌肉共同活动的结果。动物在休息期间,肌肉处于紧张状态,可保持身体的姿势和平衡。运动时则肌肉收缩,并产生张力。肌肉能否进行较长时间的工作取决于能否有足以保证肌纤维中的线粒体产生腺苷三磷酸的能量和氧的供应,以及代谢产物的排除。能量来自脂肪、葡萄糖和肌糖元的氧化。另外,肌纤维也有储备能源的功能。 运动系统 运动机制 家畜运步是指肢端自地面提起时,运用以肘关节为支点、力臂小于重臂的速度杠杆。肢端着地后躯体前进,是运用以肢端着地点为支点,力臂大于重臂的省力杠杆。如前肢的运步,先是随着肩关节、肘关节、腕关节和指节间关节的屈肌收缩,这些关节屈曲,肢端自地而提起;接着,随着伸肌收缩,这些关节伸展;同时由于躯体向前推进,前肢迈前一步,肢端着地。之后,这些关节的伸肌(包括腕关节和指节间的屈肌)收缩,有关的关节伸展,推动躯体前进。后肢的运步基本上由后肢的有关关节,如髋关节、膝关节、跗关节和趾节间关节及其肌肉进行着类似的伸屈活动,推动躯体前进。在四肢交替运动推动躯体前进的过程中,当后肢着地支撑身体时,躯体后部升起,重心前移;前肢着地支撑躯体时,躯体前部升起,重心后移。从而,躯体呈现不断的起伏波动。

骨骼详细资料大全

骨骼 (bone,skeleton):人或动物体内或体表坚硬的组织。分两种,人和高等动物的骨骼在体内,由许多块骨头组成,叫内骨骼;节肢动物、软体动物体外的硬壳以及某些脊椎动物(如鱼、龟等)体表的鳞、甲等叫外骨骼。通常说的骨骼指内骨骼。

骨骼是组成脊椎动物内骨骼的坚硬器官,功能是运动、支持和保护身体;制造红血球和白血球;储藏矿物质。骨骼由各种不同的形状组成,有复杂的内在和外在结构,使骨骼在减轻重量的同时能够保持坚硬。骨骼的成分之一是矿物质化的骨骼组织,其内部是坚硬的蜂巢状立体结构;其他组织还包括了骨髓、骨膜、神经、血管和软骨。人体的骨骼起著支撑身体的作用,是人体运动系统的一部分。成人有206块骨。骨与骨之间一般用关节和韧带连线起来。

基本介绍 中文名 :骨骼 外文名 :bone 存在 :人或动物 位置 :体内或体表 组成 :无机矿物和有机质 拼音 :Gu Ge 其他外文名 :skeleton 起源进化,进化竞争,化学组成,多功能,外骨骼,人的骨骼,构成,功能,营养成分,骨骼鉴定,判断性别,判断年龄,DNA鉴定,骨骼保健,补钙,负重训练,戒菸禁酒,密度检查,影响骨骼健康, 起源进化 进化竞争 古生物学家熟知的、首次发现于澳大利亚的伊迪卡拉动物化石距今5.7亿年前,它们都是没有硬骨骼的软躯体动物。已知最早的具有硬的外骨骼(外壳)的动物化石是寒武系最底部的所谓“小壳化石”,它们是一些小到只有几毫米长的锥形的或异形的小管,其矿物成分是碳酸盐或磷酸盐,这可以说是动物最早的骨骼化。 令人惊奇的是,寒武纪初始蓝菌和其他一些藻类也出现了钙化现象。动物与植物几乎同时骨骼化(钙化)这一现象引起古生物学和沉积学家们的兴趣,并引起一场关于骨骼化原因的讨论与争论。多数古生物学和沉积学家都认为,新元古代海水化学的变化促进了骨骼的进化产生。例如英国沉积学家Riding认为,在元古宙末到寒武纪之初,海水中镁-钙比值m(Mg)/m(Ca)下降,碳酸盐岩中白云石减少、方解石增多,这种变化与钙化的蓝菌出现相关。同时元古宙末海水中磷酸盐丰富,这和一些磷酸盐的小壳动物化石的出现有关。但俄国学者分析了元古宙末(文德期)到早古生代的碳酸盐时发现,镁与钙的比值并没有大的变化。另一方面,美国学者Grotzinger(1989)认为元古宙末海水钙的含量下降,海水的钙离子从早元古代的饱和或过饱和状态逐渐下降到新元古代晚期和寒武纪初期的低于饱和点的状态。因此,骨骼化的原因可能不在海水化学环境,而与生物本身有关。 蓝菌 动物外骨骼的出现与蓝菌的钙化。 寒武纪初始的动物外骨骼的出现与蓝菌的钙化。a.寒武纪早期钙化的丝状蓝菌Girvanella;b~d.长江西陵峡震旦系灯影组顶部(靠近寒武系底界)的小壳化石:圆口螺Circothecasp.(b)三槽阿拉巴管Anabaritestrisulcatus(c)和震旦虫管Sinotubulitessp. 元古宙末,多细胞底栖植物和浮游植物繁盛,随着动物的第一次适应辐射,海洋生态系统的生物多样性大大增长,食物链层次增多,物种之间竞争加剧。一些学者认为,生态系统中可能出现了肉食性和植食性的动物,骨骼化首先是对生态系统内部新关系的反应。换句话说,蓝菌和其他藻类植物的钙化可能是对植食性动物的采食的防护,一些小的无脊椎动物的矿化的外壳的产生可能也是对捕食动物的适应。如果上述解释是对的,那么我们可以说,骨骼最初是作为防护(防卫)系统而进化产生的。动、植物几乎同时骨骼化可能与元古宙末至寒武纪初的海洋生态系统内部种间关系复杂化相接。 化学组成 从化学组成上看,可以区分出以无机矿物为主要成分的骨骼和以有机质为主要成分的骨骼。多数无脊椎动物的骨骼以碳酸钙(方解石、文石)为主要成分,几丁质外骨骼见于节肢动物等较高等的无脊椎动物。几丁质是一种多糖(氨基多糖)类有机物,节肢动物(甲壳类,昆虫等)的外骨骼主要是由几丁质和矿化(磷酸钙化)的胶原纤维(一种蛋白质)组成。陆地植物的支撑基础是木质素,是多聚的芳香族化合物。从进化出现的顺序看,以碳酸钙、磷酸钙和矽质的无机成分为主的骨骼出现较早,其次是几丁质骨骼,然后是钙化的胶原纤维型骨骼。植物的木质化比较晚些。 多功能 骨骼的进化与骨骼的支撑功能有关,骨骼作为支撑系统使生物体的结构更符合力学原则。关于支撑的重要性,我们可以举出下面几项:(1)多细胞生物的软组织、软躯体若没有硬的支撑系统则难以增大体积;(2)支撑系统使躯体内的重要器官在空间上得以合理地配置,并保持相对稳定的空间位置,实现整体的功能谐调;(3)支撑系统使动物的运动器官得以发展,并最终使动物能脱离水环境;(4)支撑系统在植物中的发展使植物能扩大表面积,并向高处获得空间,最终使植物能向陆地发展。 水母 骨骼在进化过程中,其防护功能与支撑功能互相结合,例如无脊椎动物外骨骼既是支撑系统,又是防护系统。脊椎动物骨骼的主要功能是支撑,其防护功能让位于皮肤。 A.头足类(直角石)的外骨骼:主要功能是防护; B.甲壳动物的几丁质外骨骼:具有防护与支撑双重功能; C.脊椎动物的内骨骼:主要功能是支撑,防护功能由皮肤承担。 外骨骼 绝大多数无脊椎动物的骨骼位于体外,即外骨骼。动物的外骨骼体制既有它的优越性,也有其限制性,外骨骼体制的优越性在于支撑、运动、防护三项功能紧密结合。外骨骼体制的限制性也很突出,例如: (1)防护功能与运动功能之间的矛盾。这在软体动物中表现最为突出。厚重的贝壳影响运动能力,而薄的外壳却又减弱了防护功能。这正像人类的战争武器坦克一样,在装甲厚度与速度之间出现了矛盾。因此在软体动物中可以看到两种极端现象:具有厚重外壳的砗磲(Tridaa)已经丧失运动能力,丢失了外骨骼的乌贼却获得了高速率。 无鳞砗磲 (2)生长的限制。动物的软躯体的生长受到坚硬的外骨骼的限制。于是我们看到昆虫是如何艰难地“蜕皮”的,但腹足类的螺旋形壳和某些环节动物的管状壳并不影响其内的软躯体的生长。 (3)呼吸的限制。节肢动物的外壳骨骼是体表呼吸的障碍,坚硬的外骨骼也不可能进化出像陆地脊椎动物那样的“负压呼吸”系统。昆虫的气管式呼吸系统的效率较低,限制了躯体体积的增长。 人的骨骼 骨骼化是生物结构复杂化的基础,骨骼系统又是生物形态进化的限制因素。骨骼是组成脊椎动物 内骨骼的坚硬器官,功能是运动、支持和保护身体;制造红血球和白血球;储藏矿物质。骨骼由各种不同的形状组成,有复杂的内在和外在结构,使骨骼在减轻重量的同时能够保持坚硬。骨骼的成分之一是矿物质化的骨骼组织,其内部是坚硬的蜂巢状立体结构;其他组织还包括了骨髓、骨膜、神经、血管和软骨。 构成 颅骨:(8脑颅骨)额骨、筛骨、蝶骨、枕骨(不成对) 顶骨、颞骨 (15面颅骨)鼻骨、泪骨、腭骨 上颌骨、下鼻甲、颧骨 下颌骨、舌骨、犁骨(不成对) 躯干骨:24脊椎、一胸骨、12对肋骨、一尾骨、一骶骨 四肢骨:1肩胛骨、1锁骨、1肱骨、1尺骨、1桡骨、8腕骨、5掌骨、14指骨*2(上肢骨64) 1髋骨、 1股骨、1髌骨(膝盖骨)、1胫骨、1腓骨、7跗骨、5跖骨、14趾骨*2(下肢骨62) 功能 保护功能:骨骼能保护内部器官,如颅骨保护脑;肋骨保护胸腔。 透视物种进化与动物骨骼亲密接触 支持功能:骨骼构成骨架,维持身体姿势。 造血功能:骨髓在长骨的骨髓腔和海绵骨的空隙,透过造血作用制造血球。 贮存功能:骨骼贮存身体重要的矿物质,例如钙和磷。 运动功能:骨骼、骨骼肌、肌腱、韧带和关节一起产生并传递力量使身体运动。 大部分的骨骼或多或少可以执行上述的所有功能,但是有些骨骼只负责其中几项。 营养成分 1.骨骼“支撑者”:钙 人的骨骼是“活”的,当钙摄入不足时,骨骼中的钙就会释放到血液里,以维持血钙浓度,导致骨密度越来越低,骨质越来越疏松,进而引发骨折、骨质退行性增生或儿童佝偻病。 营养策略:有人做过统计,在普通人一天的膳食中,平均只能摄入250—350毫克钙,与中国营养学会建议的每日800—1000毫克钙摄入量相差甚远。 专家指出,年轻时就要多吃含钙食物,才能为骨骼储蓄充足的钙。一般情况下,多吃牛奶、豆制品、海带、虾皮等,就能够满足正常人补钙的需要。 烹饪时可以放点醋,有助钙质溶解,帮助吸收。喜欢吃肥肉、油炸食品等高脂肪食物,以及爱吃咸的人,要特别注意补钙,因为油脂和盐会抑制钙的吸收。 2.骨骼“加油站”:维生素D 它能促进肠道钙吸收,减少肾脏钙排泄,就像加油站一样,源源不断地把钙补充到骨骼中去。如果缺少维D,骨头的硬度会降低,形成“软骨症”。幼儿往往颅骨、胸廓发育不全,容易佝偻;孕妇、老人的下肢、骨盆等处骨骼力量则会减退。 营养策略:人体90%的维D依靠阳光中的紫外线照射,通过自身皮肤合成;其余10%通过食物摄取,比如蘑菇、海产品、动物肝脏、蛋黄和瘦肉等。 专家指出,补维D最安全、有效、经济的方法是晒太阳。美国研究人员建议,天气晴朗时,每天正午前后两小时内,不擦防晒霜,暴露40%以上的皮肤,晒太阳5—15分钟就足够。对于长年在写字楼办公的人来说,隔着玻璃照射阳光达不到补维D效果,最好假期多进行户外运动。 3.骨骼“混凝土”:蛋白质 骨骼中,22%的成分都是蛋白质,主要是胶原蛋白。有了蛋白质,人的骨头才能像混凝土一样,硬而不脆、有韧性,经得起外力的冲击。蛋白质中的胺基酸和多肽有利于钙的吸收。 如果长期蛋白质摄入不足,不仅人的新骨形成落后,还容易导致骨质疏松。有研究发现,不爱吃肉、豆制品,长期缺少蛋白质的人,容易发生髋骨骨折。 营养策略:常吃富含胶原蛋白和弹性蛋白的食物,对骨骼健康最有益,比如牛奶、蛋类、核桃、肉皮、鱼皮、猪蹄胶冻等。正常人不需要额外服用蛋白粉等保健品。蛋白质摄取过多反而对骨骼不利,会使人体血液酸度增加,加速骨骼中钙的溶解和尿中钙的排泄。 4.骨骼“保卫者”:镁 人体60%—65%的镁存在于骨骼中。专家表示,在新骨的形成中,镁起到重要作用。骨骼中镁的含量虽然少,可一旦缺乏,会让骨头变脆,更易断裂。 长期缺镁,还会引发维生素D缺乏,影响骨骼健康。饮食中镁摄入低的女性,骨骼密度也较低。 营养策略:紫菜、全麦食品、杏仁、花生和菠菜等都富含镁。每星期吃2—3次花生,每次5—8粒就能满足一个人对镁的需求;多喝水也能促进镁的吸收。 5.骨骼“稳定剂”:钾 人体每个细胞都含有钾元素,骨骼也不例外。它的主要作用是维持酸碱平衡,参与能量代谢和神经肌肉的正常功能,这对于骨骼的生长和代谢是必不可少的。发表在美国《环境营养》期刊上的一项研究还指出,钾能够防止钙流失,使骨骼更硬朗。 营养策略:要想补钾,多吃香蕉、橙子、李子、葡萄干等水果,西红柿、土豆、菠菜、山药等蔬菜,以及紫菜、海带等海藻类食品是最安全有效的方法。特别是橙汁,里面含有丰富的钾,而且能补充水分和能量。钾补充剂最好不要轻易服用,因为它可能对心脏不利。 6.骨骼“添加剂”:维生素K 就像食物需要一定的添加剂一样,骨头也需要添加剂维K来激活骨骼中一种非常重要的蛋白质——骨钙素,从而提高骨骼的抗折能力。 哈佛大学研究表明,如果女性维K摄入较低,就会增加骨质疏松和股骨骨折的危险。荷兰研究则发现,补充维K能促进儿童骨骼健康,减少关节炎的发生。 营养策略:膳食中,蔬菜叶片的绿颜色越深,维K的含量就越高。每天只要吃500克蔬菜,其中包含300克以上的深绿叶蔬菜,就能有效预防维K不足。 长期服用抗生素的人,肠道菌群平衡可能被破坏,影响维K的合成,要特别注意多吃绿叶蔬菜。此外,维K是一种脂溶性维生素,补充时最好不要生吃蔬菜,而是加调味油炒熟。 7.骨骼“清道夫”:维生素B12 维B12是唯一含有矿物质磷的维生素,对维持骨骼硬度起着重要作用。它就像个“清道夫”一样,能清除血液中的高半胱氨酸,保护骨骼,防止因为高半胱氨酸过多导致的骨质疏松,甚至是髋骨骨折。 营养策略:动物肝脏、贝类、瘦牛肉、全麦面包和低脂奶制品,都是富含维B12的食品。不过,老人很难吸收维B12,植物性食物(螺旋藻等藻类除外)中不含维B12,所以50岁以上的人和素食者可适当服用补充剂,每天摄入的标准是2.4微克。 骨骼鉴定 如何从骨骼中找到确定性别、年龄等信息的线索,在中国河南省安阳县安丰乡西高穴村的一处东汉大墓的抢救性挖掘,大墓主人很有可能是三国时期的枭雄曹操。考古学家给出的证据之一就是他们从骨骼中推断出墓中一具遗骸系男性且死亡年龄大约是60岁,这与曹操66岁的享年十分相近。此次挖掘中,除了疑似曹操的骨骸外,专家还发现了两具合葬的女性骨骸。 判断性别 利用骨骼判断性别的方法很多,总体上可分为两类:对比观察法和仪器测量法。前者是指用肉眼观察骨骼的形态差异来判定性别。一般而言,男性骨骼比较粗大,表面粗糙、肌肉附着处的突起明显,骨密质较厚,骨质重;而女性骨骼比较细弱,骨面光滑,骨质较轻。不过长期从事体力活动的妇女,其骨骼与男性无显著差异。这时可以通过骨盆来判别,由于女性承担了生育的任务,因此骨盆上口的尺寸(骨盆内部尺寸)要大一些。这种差异自胎儿期就已呈现出来,性成熟后更加明显。除此之外,颅骨、胸骨、锁骨、肩胛骨以及四肢长骨等也存在一定的性别差异。后者是指使用骨骼测量仪对遗骸的长、宽、高、角度及厚度进行测量。将所得数据与男性均值及女性均值相比较;或依据相应的数学手段,将数据代入回归函式中计算。进而判断性别。 判断年龄 从骨骼出发鉴定年龄时,往往要采用多种方法互相印证,以提高结果的准确性,鉴于营养、健康状态、地理环境及性别等诸多因素都会对骨骼的形态产生影响,不少骨骼特征——如骨化中心的出现和骨骺的愈合状况——会随着年龄的增长呈现规律性的变化。比如30~40岁时,肋软骨骨化中心增多,胸骨柄与胸骨体出现愈合,40~50岁时,胸骨体与剑突愈合,喉和肋软骨开始固化,到了60岁以上,全身软骨都会发生骨化。 骨骺 对于成年骨骸的年龄鉴定,通过观察比较骨骼的形态学变化更为常用。儿童期时,骨组织有机质的成分较多,使得骨骼的韧性大,硬度小。到了成年期,无机质的比例渐渐升高,约占70%,这时的骨骼不但坚硬,而且弹性韧性都很良好,时至老年期,无机成分进一步升高,骨骼变得更脆,同时在骨质增生和吸收的作用下,骨骼的形态也发生了相应的改变。推测成年期及以后的骨骸的年龄时,观察耻骨联合面是最佳方法之一。以此处的骨骼特征推断年龄,误差可控制在5年之内,倘若死亡年龄在20~40岁之间的话,误差甚至可以缩窄至两年左右。随着技术的进步,借助数量化模型的手段来分析耻骨联合面的年龄特征还可以让结果更加准确。此外胸骨也具备随年龄增长而规律性变化的特点,据此推断年龄的准确性仅次于耻骨联合面。 在考古挖掘中,颅骨一般保存相对完好,因此从这里也能找到不少鉴别年龄的线索。颅骨是由29块骨骼组成的结构,除下颌骨外,其他颅骨间均以骨缝相连。这些微小缝隙的存在允许颅骨可以微量滑动。虽然大部分颅骨骨缝的愈合速度在个体之间差异较大,但依然能为年龄的划分提供宝贵的信息。比如颅骨基底缝的愈合时间相对比较稳定,一般在20~25岁,通过观察基底缝的融合情况可以判断骨骼主人是否为成年人。当人步入老年期(50~60岁)后,骨缝发生完全融合并消。因此综合这些信息,有经验的考古专家拿到一具颅骨时,仅凭肉眼就可以大致判断出颅骨主人死亡所处的年龄段。 DNA鉴定 以骨骼为材料,人们还可以从中提取出鉴定某人身份的DNA信息。想要确定高穴大墓中的骨骸是否为曹操,仅凭性别年龄远远不够,还需要DNA信息。事实上,自上世纪80年代以来,科学家分别从古人类化石、古牙齿、陈旧骨骼中成功提取到了DNA。以骨骼为例,这里致密坚硬的组织大大减缓了环境因素和微生物对组织结构的破坏,为DNA的保存提供较为理想的场所。另外骨骼中存在的羟基磷灰石对DNA具有吸附作用,这进一步延缓了DNA的降解过程。相信从疑似曹操的骨骸中提取到DNA并非什么难事,至于是与曹氏后人进行DNA比对,还是与曹植墓中提取到的DNA进行一次穿越千年的“亲子鉴定”,这就有待考古学家的仔细考量了。 dna 骨骼保健 如果你的医生说你的骨骼过于单薄欠强壮——关键的是采取一些步骤延缓骨关节炎的进展。我们如果进行补钙、运动、不吸菸、不酗酒、进行定期的骨密度测试。所有的这一切都是必要的措施,尤其对于骨密度较低的女性而言更应该如此。如果骨骼密度的测试后结果不理想的话,就应该着手进行一些策略的改变。与你的医生交流。影响骨健康的因素很多。如使用某些药物治疗慢性疾病会改变骨的健康。因此,我们必须全面监测骨质疏松的发展和相关的风险系数。如服药后的一些症状,如头昏轻微的疼痛、丢失平衡能力,这些因素都容易导致你发生跌倒的风险。医生可能会与你解释你的风险因素,同样也会建议你预防与治疗骨丢失的措施。 补钙 补充钙和维生素D。钙可以强壮我们的骨骼,维生素D则可以帮助我们吸收钙,绝经后的女性需要每日补充钙1200毫克和至少400~600IU的维生素D。才能够保证骨骼的健康。任何骨质疏松的患者都应该通过血液检查血液里的维生素D和钙的水平。大部分美国女性每日摄入的钙少于500毫克。进行日晒可以促进皮肤产生维生素D,随着人的衰老,皮肤产生维生素D的能力下降。同样,我们涂抹防晒霜会降低我们的皮肤产生维生素D的水平。我们推荐一些方法来促进吸收钙与维生素D:我们先了解食物里所含的钙的情况,低脂肪的牛奶和豆奶(8英两,?1英量:英国常衡制和药剂衡量制中的重量单位,缩写为oz.。英制1英量?等于1磅的1/16,或者等于437.5喱(28.3495克)。药剂衡量制1英量?等于1磅的1/12,或480喱(31.103克))含300毫克钙;乡村乳酪(16英两)含300毫克钙;低脂肪的优酪乳(8英两)含250~400毫克钙;厅装鲑鱼(3英两)含180毫克钙;加钙的桔子水(6英两)含200~260毫克的钙;加热后的菠菜和甘蓝(半杯)含100毫克钙;加热后的花椰菜(半杯)含有40毫克的钙。我们每日摄入的钙必须是足够的能够保证我们身体对钙的需求。 钙的补充剂:有两种类型的钙。一种是碳酸盐钙和柠檬酸钙,这是可以购买的钙补充剂。碳酸盐钙必须与食物同吃才会被吸收。有些女性服用这种钙会有副作用。如胃肠不适,腹胀感与便秘,如果你镁制剂同时服用,就不会有便秘的情况,有些药物会影响到碳酸盐钙的吸收,如Nexium,Prevacid,Prilosec以及治疗反酸药和治疗为溃疡的药物。柠檬酸钙通常有好的耐受性,不需要与食物同食,通常会服用比推荐量对一片的服法。分开服用效果更佳,帮助身体更好的吸收钙,如果每次服用钙超过500毫克,人体一般都不吸收,白白浪费。 头骨和椎骨 在购买补充剂之前应该要认真看标签说明。这样做是为了确保你购买的补充剂是高品质和符合你的情况的补充剂。不要忘记维生素D!大部分钙片或大部分维生素片剂含有维生素D。然而,你可以从食物里获得维生素D(强化的牛奶制品、蛋黄、盐水鱼如鲔鱼和肝脏)。研究支持维生素D3的吸收与储存胜过维生素D2。 如果你在服用骨质疏松的药物,那就应该服用大量的钙制剂。很多患者认为他们在服用治疗骨质疏松的药物就不必要服用钙制剂,那是不对的,医生有时也忽视了强调这一点。有必要的话,服用钙的补充剂,有的病例医生会给患者开高剂量的钙与维生素D片剂。 负重训练 补充钙与骨质疏松药可以终止骨质的丢失。允许骨质的自我更新的过程。骨骼需要有压力的 *** 才会使其更加的强壮,这就是负重训练可以使骨骼更加强壮。在开始任何运动训练之前应该咨询你的运动医学医生。让他们为你设计符合你体质特点的运动处方。我们建议:每日坚持步行。行走、慢跑、轻松的有氧运动可以是骨和肌肉进行对抗重力——是骨骼承受压力。使骨更加健壮。骑脚踏车是对骨有很好的方式。它提供一定的阻力,这样可以改善肌肉和强壮骨质。如果你的条件允许的话,每周进行五次30分钟负重的训练。最少要进行每周三次30分钟的训练。核心肌肉力量的训练是很重要的训练。进行腹部肌肉和腰部的肌肉训练、瑜伽、普拉提和太极拳都可以让你的脊柱获得好的稳定性。脊柱周围的肌肉得到强壮可以增加脊柱的稳定性,而瑜伽、普拉提和太极拳可以帮助你有好的平衡能力。预防跌跤有好处。如果进行瑜伽、普拉提和太极拳的训练一定要遵循导师的指导,确保自己的运动在专业的监督下损伤的风险是最低限度。 戒菸禁酒 不要吸菸与适度饮酒(中度酒)。尼古丁对骨有损害。告诫那些菸民如果不戒菸的话医生对你的帮助是微乎其微。吸菸的行为将抵消所有的药物作用。适度的饮酒对人体有益。每周1~2次的频率。过度的饮酒将导致骨质的丢失。如果吸菸与过度饮酒将造成骨质的严重损害。 密度检查 骨矿物质的密度检查(BMD)是唯一确认你钙丢失程度的监测方法。黄金标准骨密度检查是双极能量X-ray吸收测量学(dual energy absorption metry (DEXA)),这是低辐射最精确的测试方法。你应该选择什么样的测试频率呢?如果你正在服用骨质疏松药或遭遇某种风险因素,那你就需要每六月测试一次。在测试之前,应该与你的保险公司进行咨询,有些保险是提供每两年进行骨密度的测试。一般我们会在获得保险公司的同意后进行骨密度的测试,进行的测试通常是年度的测试,在测试后通常紧随着治疗的措施。 影响骨骼健康 盲目减肥 适当的脂肪,能通过生化作用转化成雌激素等,增加钙的吸收,促进骨的形成,防止骨质疏松。不少都市现代女性过度追求苗条,在减去脂肪的同时也减掉了骨量,年纪轻轻就被发现有骨质疏松的症状。因此,白领女性保持适当体重是非常有必要的。美国一项研究发现,女性在节食18个月以后,体重虽减了3公斤,但是骨密度也会随之下降。由于脂肪层和肌肉薄弱,一旦发生意外,比如不小心扭伤、摔倒、挤压时,就比其他人更易骨折。另外,体形瘦小的人脂肪组织和肌肉较薄,也容易发生骨质疏松,并且伴随着骨质疏松性骨折。 爱穿高跟鞋 女 *** 美是天生的高跟鞋更是给女性的美做出了不小的贡献,但也给你的骨骼健康带来不小的麻烦。正常情况下,脚部有三个受力点:第一、第五个脚趾和脚跟。而穿高跟鞋时,身体前倾,重心前移,人体重量几乎都落在前两点,这会引起上半身的脊椎问题。 常穿高跟鞋,会使前脚掌受过多压力,膝关节吸收更多震荡力,加快了韧带的老化,韧带对固定膝关节起到非常关键的保护作用,提前老化等于让关节提前“退休”。因此,高跟鞋的鞋跟不要超过5厘米,每周穿高跟鞋的次数不要超过4次,另外,穿不同高度的高跟鞋还可以使踝关节适应性提高,减少下肢浮肿! 天冷穿裙子 人体骨骼、关节的抵抗力和血液循环相关。穿裙子势必将下肢暴露在空气中,受到寒冷的 *** ,会使腿部血管痉挛,使膝关节周围供血减少,最终导致关节抵抗力下降。经年累月,患风湿性关节炎的可能性就大大增加。 整天宅在家里 如果说以前导致骨质疏松主要是蛋白质摄入不足,现在阳光直照不足则成为主因了。现代人补钙意识有所提高,但25~35岁之间的人多为办公一族,进了家门几乎一天都不出来,也不喜欢运动,不爱晒太阳,导致维生素D缺乏,补了钙却无法充分吸收的遗憾便产生了。一旦有骨质疏松,就容易出现用力后骨折、腰椎间盘突出、腰部扭伤等问题。 酷爱碳酸饮料 常喝可乐也会降低女性骨密度,而骨密度与骨折风险紧密相连,哈佛大学公共卫生研究所的一项研究显示,喜欢喝汽水类饮料的女性,骨折的几率是不喝汽水者的3倍;而爱喝可乐的女性,骨折的几率是不喝汽水类饮料的5倍。研究人员的解释是,可乐中含有磷酸,不仅会降低人体对钙的吸收,还会加快钙的流失;喝可乐的女性还有可能牛奶摄取量不足,使身体缺乏钙质。 游戏迷 医学研究证明,脊椎相关疾病患者越来越年轻,与电脑有着直接的关系。由于滑鼠的使用,导致右边颈部用力较多,颈椎协调不平衡,容易诱发一侧肌肉、韧带紧张。而长时间使用电脑使颈椎保持强直姿势,腰椎长期承受身体的重量,都会导致脊椎相关疾病的发生。

骨科详细资料大全

《骨科》杂志系,是华中科技大学同济医学院附属同济医院等联合主办的骨科专业期刊,经国家新闻出版总署批准面向国内外公开发行。创刊时间为1964年。

基本介绍 中文名称 :骨科 外文名称 :Orthopaedics 语言 :中文 类别 :出版,医学期刊 主管单位 :湖北省卫生厅 主办单位 :华中科技大学同济医学院附属同济医院、中华医学会武汉分会 编辑单位 :《骨科》编辑部 创刊时间 :1964年 出版周期 :季刊 国内刊号 :CN: 42-1799/R 国际刊号 :ISSN: 1674-8573 邮发代号 :38-26 定价 :6.00元/期;24.00元/年 出版地 :湖北省武汉市 学科,简介,骨科学,骨科学发展,骨科疾病,常见骨科病,具体信息,颈椎病,强直性脊柱炎,器材,分类,骨科软固定功能支,检查治疗,期刊,收录情况,主要栏目,读者对象,发展与宗旨,骨科杂志目录, 学科 简介 骨科是各大医院最常见的科室之一,主要研究骨骼肌肉系统的解剖、生理与病理,运用药物、手术及物理方法保持和发展这一系统的正常形态与功能。随着时代和社会的变更,骨科伤病谱有了明显的变化,例如,骨关节结核、骨髓炎、小儿麻痹症等疾病明显减少,交通事故引起的创伤明显增多。骨科伤病谱的变化,这就需要骨科与时俱进了。 骨科学 骨科学又称矫形外科学。是医学的一个专业或学科,专门研究骨骼肌肉系统的解剖、生理与病理,运用药物、手术及物理方法保持和发展这一系统的正常形态与功能,以及治疗这一系统的伤病。骨科学又称矫形外科学。是医学的一个专业或学科,专门研究骨骼肌肉系统的解剖、生理与病理,运用药物、手术及物理方法保持和发展这一系统的正常形态与功能,以及治疗这一系统的伤病。 随着科学技术的发展和进步,骨科学在诊断、治疗方面有了很大的进展。手外科的建立和发展,使手外伤的诊治技术迅速得到普及和提高;显微外科手术的广泛开展,使多趾游离再造手、神经束的吻合及松解,0.2mm的小动脉间的吻合已不再是神话;采用新的术式治疗脊柱侧凸、颈椎病及颈椎狭窄等疾病都取得了较好的骨科学效果;对关节炎患者采取的各种有效的术式,使得多年卧床的患者从新站立起来;对恶性骨肿瘤的治疗已从单一的截肢发展到综合的治疗,提高了手术的治愈率和存活率;膝关节镜的临床套用,不仅解决了一些疑难关节病的诊断,而且实现了诊断及治疗同步进行;随着材料科学的发展,使得一些复杂的骨折同样也能行内固定治疗;人工关节、人工椎体的功能及性能也更趋完善。总之,骨科学的发展与基础医学,特别是实验医学及材料科学的发展是分不开的。 随着时代和社会的变更,骨科伤病谱有了明显的变化,例如,骨关节结核、骨髓炎、小儿麻痹等疾病明显减少,交通事故引起的创伤明显增多,人口的老化,老年性骨质疏松引起的骨折、骨科学关节病增多,环境因素的影响,骨肿瘤、类风湿性关节炎相应增多等等。骨科伤病谱的变化,要求骨科研究的重点以及防治重点必须适应这一转变,这也决定了骨科今后的发展方向。 现代科学的发展,既要有精细的分科,同时更强调多学科的合作,骨科的发展同样如此,未来的骨科发展,不仅要求更加重视同基础医学的结合,而且应该重视充分利用先进的科学技术成果,例如,人工关节功能的进一步完善,就必须依赖材料科学的发展,及时地将材料科学的新成果套用于骨科临床,将会使骨科的诊治水平提高到一个新的高度。 骨科学发展 解放后,中国骨科得到快速、巨大的发展,许多大城市的医学院附属医院、省市医院、解放军总部及各军区总医院,纷纷建立骨科。天津建立以方先之教授领导的骨科医院。1957年孟教授任新建的积水潭医院院长,创建了我国较大的创伤骨科医院。在上海,第二军医大学屠开元教授领导了上海急症外科医院,收治骨科及颅脑创伤病人。各地医院骨科的建立,需要大量骨科医师,为此,1953年方先之教授在天津骨科医院创办骨科进修班,至1968年方先之教授逝世,共举办了15期,培训骨科医师600余人,遍布全国,此后一直坚持办班。北京积水潭医院亦每年举办骨科进修班,为全国培训骨科医师。1979年解放军总后勤部卫生部在军医大学附属医院、总医院及中心医院先后建立十余个创伤骨科、矫形等专科中心,各省亦建立了一些骨科中心,纷纷办骨科进修办,培训骨科医师,促进了骨科队伍的发展。现在,我国已是世界上骨科医师最多的国家之一。 由中华医学会、中华医学会骨科分会主办的中华医学会第十二届骨科学术大会暨第五届COA国际学术大会2010年11月11-14日在成都世纪城新国际会展中心召开。 本届会议是继北京、郑州、苏州、厦门召开后的第五届COA国际学术大会。会议将集中体现一年来国内外在骨科领域所取得的研究成果,反映脊柱、创伤、关节、关节镜及运动医学、骨肿瘤、骨质疏松、足踝外科、护理等方面的最新技术和临床进展。会议将设国际会场、专题讲座、大会报告及展板四种形式。 中华医学会骨科学分会主任委员、本次大会主席邱贵兴致欢迎辞,他指出,COA的成功举办,标志著中华医学会骨科学分会在国内找到了一条适合中国国情的专科发展之路,以“骨科医生”为本,塑造“学术骨科、规范骨科、和谐骨科、人文骨科”,更好地为广大民众服务。 骨科疾病 常见骨科病 髌骨骨折、尺神经损伤、先天性髋内翻、断指再植、趾间神经痛、距骨后外结节骨折、拇指再造、先天性胫骨缺如、僵鉧、感染性肋软骨炎、颞下颌关节强直、风湿热、眼眶击出性骨折、膕肌肌腱炎、跖趾关节痛、胫后神经痛、跟腱前囊炎、纤维肌痛症、滑囊炎、感染性关节炎、足舟状骨骨软骨病、姿态性腰腿痛、赖特综合征、灼性神经痛、纤维肌痛综合症等。 髌骨骨折 具体信息 (1)骨折:锁骨骨折,肩锁关节脱位,肩关节脱位,肱骨外科颈骨折,肱骨干骨折, 肱骨髁上骨折,肘关节脱位,桡骨头半脱位,前臂双骨折,桡骨下端骨折;髋关节脱位,股骨颈骨折,股骨转子间骨折,股骨干骨折,髌骨脱位,髌骨骨折,膝关节韧带损伤,膝关节半月板损伤,胫骨平台骨折,胫腓骨干骨折,踝部骨折,踝部扭伤,足部骨折;脊柱和骨盘骨折。 人体组织结构图 (2)骨和关节化脓性感染:化脓性骨髓炎(急性,慢性,局限性,硬化性,创伤后),化脓性关节炎。 (3)骨和关节结核:脊柱结核,髋关节结核,膝关节结核。 (4)非化脓性关节炎:骨关节炎,强直性脊柱炎,大骨节病,松毛虫性关节炎。 (5)骨肿瘤:良性骨肿瘤(骨瘤,骨样骨瘤,软骨瘤),骨巨细胞瘤,原发性恶性骨肿瘤(骨肉瘤,软骨肉瘤,骨纤维肉瘤,尤文肉瘤,非霍奇金淋巴瘤,骨髓瘤,脊索瘤),转移性骨肿瘤,骨的瘤样病损(骨囊肿,动脉瘤性骨囊肿,骨嗜酸性肉芽肿,骨纤维异样增殖征)。 (6)骨质增生:骨质增生症是由于构成关节的软骨、椎间盘、韧带等软组织变性、退化,关节边缘形成骨刺,滑膜肥厚等变化,而出现骨破坏,引起继发性的骨质增生,导致关节变形,当受到异常载荷时,引起关节疼痛,活动受限等症状的一种疾病。分原发性和继发性两种。 (7)风湿:类风湿性关节炎类风湿性关节炎又称类风湿,以慢性、对称性、多滑膜关节炎和关节外病变为主要临床表现,属于自身免疫炎性疾病。该病好发于手、腕、足等小关节,反复发作,呈对称分布。 颈椎病 颈椎病又称颈椎综合征,是颈椎骨关节炎、增生性颈椎炎、颈神经根综合征、颈椎间盘脱出症的总称,是一种以退行性病理改变为基础的疾患。主要由于颈椎长期劳损、骨质增生,或椎间盘脱出、韧带增厚,致使颈椎脊髓、神经根或椎动脉受压,出现一系列功能障碍的临床综合征。表现为颈椎间盘退变本身及其继发性的一系列病理改变,如椎节失稳、松动;髓核突出或脱出;骨刺形成;韧带肥厚和继发的椎管狭窄等,刺激或压迫了邻近的神经根、脊髓、椎动脉及颈部交感神经等组织,并引起各种各样症状和体征的综合征。 强直性脊柱炎 强直性脊柱炎是一种全身性免疫性的慢性进行性炎性疾病。其早期症状为骶髂关节、腰背部、髋部或大关节疼痛,同时伴有腰背部僵硬,因此,很多人认为强直性脊柱炎是一种骨科疾病。 但实际并非如此,研究发现,强直性脊柱炎病人受累的组织器官是全身性的,如眼睛、心脏、肺脏、肾脏等多脏器,HLA-B27阳性高达90%,部分强直性脊柱炎病人的免疫球蛋白升高,而且在临床治疗当中强直性脊柱炎套用免疫抑制剂治疗有效,以上事实均支持本病是一种全身性、免疫性疾病,只是其主要表现为骨骼病变而已。 器材 分类 一般主要有以下几种:“C”型臂X线机两台,等离子射频消融机、雷射、臭氧发生器等颈、腰椎间盘微创手术先进设备及各种理疗仪等其它设备。 骨科内固定钢板 创伤骨科以四肢骨关节损伤、骨肿瘤及各种复杂骨折为临床任务和研究方向,采用国际上先进的AO与BO理论和技术治疗了大批脊柱、骨盆和四肢骨折患者,取得了满意的临床效果。脊柱外科已成功开展了脊柱肿瘤、颈、腰椎间盘突出症的手术治疗,以及颈椎病及腰椎间盘突出症的微创手术治疗。手足外科已成功开展了断肢、断指再植与功能重建、整形及全身各种皮瓣的移植等手术治疗。 骨科软固定功能支具的套用,使骨与关节损伤后的康复成为可能。支具又称矫形器,是一种以减轻四肢,脊柱、骨骼肌系统的功能障碍为目地的体外支撑装置。支具的功能为:1. 稳定与支撑;2. 固定功能;3. 保护功能;4. 助动(行)功能;5. 预防矫正畸形;6.承重功能。 骨科软固定功能支 骨科软固定功能支具是当今世界上先进的治疗和辅助治疗的方法,是世界先进医疗水平的重要组成部分。与传统的治疗方式相比较,骨科软固定支具使用方便,治疗效果更佳,帮助病人恢复锻炼,提早回到工作岗位,具有石膏固定的符贴性 稳定性 也可避免石膏(包括其他高分子材料)引起的肌肉萎缩、皮肤骚痒等副作用。符合“动静结合,筋骨并重,内外兼治,医患配合”的治疗原则,为骨科大夫提供了安全可靠的治疗方式,不仅使医疗水准与国际先进水平接轨,亦保证手术质量和效果,避免医疗纠纷。中国套用的DROP-LOCK调节式膝支具,ACL/PCL专用支具,可调式颈椎固定牵引支具,可调性肘支具,足踝固定支具等,有力地促进骨与关节疾病、损伤的非手术治疗的开展和关节手术后运动功能的恢复,已在治疗中显示出其优越性。 检查治疗 检查 (一)随着X线机器日趋普遍,临床医师往往忽视了病理学检查的重要性,其实有许多骨折与骨症,只要仔细检查往往可以得出正确的诊断,甚至还可弥补X线检查的不足,例如下尺桡关节半脱位,由于投照角度关系,在X线片上往往显示不出来,而理学检查时却不难诊断。 (二)在检查不要将注意力集中在病人主诉部位,亦不要显露出很局限的小块区域。局部的观察往往不够全面,应该显露足够的范围才不会漏诊。检查时既要全面,又要有重点,根据需要注意体态、姿势、皮肤、关节肿胀情况和步态。在触诊时,手法宜轻柔,不要为了诊断骨折而强求骨擦音,通常只是在搬运伤员时无意中获得。 (三)检查关节活动为骨科检查的一项重要内容。必须了解关节的运动方向常用三个平面来说明,即矢状面、冠状面和横面。沿着这三个面的动作分别为伸-屈,外展-内收和内旋-外旋。用各种式样的关节测角器可精确地记录关节活动的范围。 (四)测定肌力和测量肢体为另一项重要内容。肌力的大小分成0~5级。测量肢体包括长度和周径两方面,有比拟法和皮尺测量法两种。 (五)对有神经-血管损伤的病例还须作神经系统和血管的检查。还有各种特殊检查方法,则在有关内容中叙述。 微创治疗 微创治疗是在局麻下套用雷射、射频、臭氧等物理方式将突出的髓核溶解,降低椎间盘内压力的先进疗 法。从而解除突出的椎间盘对脊髓、神经根的压迫,达到治疗目的。 期刊 收录情况 骨科现为《中国学术期刊综合评价资料库》统计源刊,并被《中国生物医学期刊引文资料库-CMCI》、《中文科技期刊资料库》、中国生物学文献资料库、《中国核心期刊(遴选)资料库》、《中国生物学文摘》、《中国学术期刊(光碟版)》、“中文生物医学期刊文献资料库-CMCC”、《万方数据-数位化期刊群》等收录。 主要栏目 设有论著、经验介绍、实验研究、专家述评、专家笔谈、临床病例(理)讨论、综述、讲座、短篇报导等栏目。 读者对象 是骨科临床医师、医学院校师生和骨科学研究所的科技工作者。 发展与宗旨 由原《华中医学杂志》改名而成,《华中医学杂志》历史悠久,由医学泰斗裘法祖教授于1964年创刊,有较高的学术价值和国内外影响力。本刊始终坚持刊物的科学性、实用性、信息性,以普及、运用、服务为宗旨,及时报导国内外骨科研究新成果、新技术、新方法,指导临床合理套用,在骨科相关科研、生产、经营、使用间发挥纽带和桥梁作用。 骨科杂志目录 中国骨科临床与基础研究杂志 骨科 国际骨科学杂志 中华创伤骨科杂志 临床骨科杂志 中华骨科杂志 实用骨科杂志 生物骨科材料与临床研究

骨头(生物学术语)详细资料大全

骨头 骨组织由活细胞和矿物质(主要是钙和磷)混合构成,正是这些矿物质使骨头具有坚实的物性。

骨头有不同的形状和大小,例如臂骨是长骨,腕骨是短骨,胸骨和颅骨是扁骨,椎骨是不规则骨。成年人的骨主要由两种组织构成:坚硬的密质骨在外,多孔的松质骨又称海绵骨在内。长骨中的大腿骨,或称股骨,中间填满称为黄骨髓的脂肪。

基本介绍 中文名 :骨头 外文名 :bone 类别 :生物学术语 成分 :活细胞和矿物质 人体骨头,生长方式,骨龄测定,起源与进化,骨的构成,骨骼的形态,长骨,短骨,扁平骨,不规则骨,种子骨,骨的组成,骨骼功能,骨骼数量,骨骼系统,内骨骼,外骨骼,水骨骼,相关知识, 人体骨头 凸起的骨端主要由松质骨构成,外包一层薄薄的密质骨。松质骨含有制造血球的红骨髓。大多数骨头的表面覆盖一层致密的纤维膜,称为骨膜。血管和神经纤维穿过骨头坚硬外层上的小通道进入疏松的内部。 生长方式 很难想像得到骨头是有生命、能生长的组织,骨头是怎么生长的呢? 骨头循独特的方式生长:首先是新细胞形成,然后,这些细胞产生一种特殊的有机物,成为环绕自身的基质,最后,钙盐在基质里沉积,使之逐渐变硬。人的骨头,早在胎龄二月时就开始形成。此后不断生长,女子到十六岁左右骨头才停止生长,男子则长到十八岁左右。胸骨至二十五岁左右就不再硬化,但其他骨头的强度和钙量仍不断增加,直到三十五岁左右才停止。在人的大半生中,骨头不断改造,骨组织不断耗损和补充。 骨头漫画 在胎儿时期,骨头的形成方式有两种。颅顶的骨头是在结缔组织膜里开始生长的,其他骨间大多始于“雏型”软骨。雏型软骨与真骨相似,只是比较柔软,宜于快速生长,最终被真骨替代。雏型软骨是逐渐由骨组织替代的。长骨的替代过程由骨干中心和骨的两端开始;最终在骨干和两端之间只留下一层薄薄的软骨,称为生长板。生长板不断形成新的软骨,软骨随后又被真骨代替,于是骨头得以生长。一旦生长板不再形成软 骨,骨头也就停止生长。 骨龄测定 “骨龄”如何测定?有何重要性? 在生长期间,长骨两端附近的软骨层以预见得到的速度变薄,最终消失,骨头也就停止生长。借助X射线检查可测定生长板的厚度,从而确定骨龄。 骨头制品 虽然每个儿童的骨头生长速度不同,但是一般来说,骨龄同年龄是相应的。如果骨龄与年龄之间出现较大的差异,可能是内分泌失调。 起源与进化 动物骨骼 古生物学家熟知的、首次发现于澳大利亚的伊迪卡拉动物化石距今5.7亿年前,它们都是没有硬骨骼的软躯体动物。已知最早的具有硬的外骨骼(外壳)的动物化石是寒武系最底部的所谓“小壳化石”( *** allshelled fossils),它们是一些小到只有几毫米长的锥形的或异形的小管,其矿物成分是碳酸盐或磷酸盐,这可以说是动物最早的骨骼化。令人惊奇的是,寒武纪初始蓝菌和其他一些藻类也出现了钙化现象。动物与植物几乎同时骨骼化(钙化)这一现象引起古生物学和沉积学家们的兴趣,并引起一场关于骨骼化原因的讨论与争论。 多数古生物学和沉积学家都认为,新元古代海水化学的变化促进了骨骼的进化产生。例如英国沉积学家Riding认为,在元古宙末到寒武纪之初,海水中镁-钙比值[m(Mg)/m(Ca)]下降,碳酸盐岩中白云石减少、方解石增多,这种变化与钙化的蓝菌出现相关。同时元古宙末海水中磷酸盐丰富,这和一些磷酸盐的小壳动物化石的出现有关。但俄国学者分析了元古宙末(文德期)到早古生代的碳酸盐时发现,镁与钙的比值并没有大的变化。另一方面,美国学者Grotzinger(1989)认为元古宙末海水钙的含量下降,海水的钙离子从早元古代的饱和或过饱和状态逐渐下降到新元古代晚期和寒武纪初期的低于饱和点的状态。因此,骨骼化的原因可能不在海水化学环境,而与生物本身有关。 寒武纪初始的动物外骨骼的出现与蓝菌的钙化。 元古宙末,多细胞底栖植物和浮游植物繁盛,随着动物的第一次适应辐射,海洋生态系统的生物多样性大大增长,食物链层次增多,物种之间竞争加剧。一些学者认为,生态系统中可能出现了肉食性和植食性的动物,骨骼化首先是对生态系统内部新关系的反应。换句话说,蓝菌和其他藻类植物的钙化可能是对植食性动物的采食的防护,一些小的无脊椎动物的矿化的外壳的产生可能也是对捕食动物的适应。如果上述解释是对的,那么我们可以说,骨骼最初是作为防护(防卫)系统而进化产生的。动、植物几乎同时骨骼化可能与元古宙末至寒武纪初的海洋生态系统内部种间关系复杂化相关。骨骼的进化可能与它的另一个重要功能有关,即骨骼的支撑功能,骨骼作为支撑系统使生物体的结构更符合力学原则。关于支撑的重要性,我们可以举出下面几项: (1)多细胞生物的软组织、软躯体若没有硬的支撑系统则难以增大体积; (2)支撑系统使躯体内的重要器官在空间上得以合理地配置,并保持相对稳定的空间位置,实现整体的功能谐调; (3)支撑系统使动物的运动器官得以发展,并最终使动物能脱离水环境; (4)支撑系统在植物中的发展使植物能扩大表面积,并向高处获得空间,最终使植物能向陆地发展。 骨骼在进化过程中,其防护功能与支撑功能互相结合,例如无脊椎动物外骨骼既是支撑系统,又是防护系统。脊椎动物骨骼的主要功能是支撑,其防护功能让位于皮肤。 A.头足类(直角石)的外骨骼:主要功能是防护; 骨组织 B.甲壳动物的几丁质外骨骼:具有防护与支撑双重功能; C.脊椎动物的内骨骼:主要功能是支撑,防护功能由皮肤承担 从化学组成上看,可以区分出以无机矿物为主要成分的骨骼和以有机质为主要成分的骨骼。多数无脊椎动物的骨骼以碳酸钙(方解石、文石)为主要成分,几丁质外骨骼见于节肢动物等较高等的无脊椎动物。几丁质是一种多糖(氨基多糖)类有机物,节肢动物(甲壳类,昆虫等)的外骨骼主要是由几丁质和矿化(磷酸钙化)的胶原纤维(一种蛋白质)组成。陆地植物的支撑基础是木质素,是多聚的芳香族化合物。从进化出现的顺序看,以碳酸钙、磷酸钙和矽质的无机成分为主的骨骼出现较早,其次是几丁质骨骼,然后是钙化的胶原纤维型骨骼。植物的木质化比较晚些。 绝大多数无脊椎动物的骨骼位于体外,即外骨骼。动物的外骨骼体制既有它的优越性,也有其限制性,外骨骼体制的优越性在于支撑、运动、防护三项功能紧密结合。外骨骼体制的限制性也很突出,例如: (1)防护功能与运动功能之间的矛盾。这在软体动物中表现最为突出。厚重的贝壳影响运动能力,而薄的外壳却又减弱了防护功能。这正像人类的战争武器坦克一样,在装甲厚度与速度之间出现了矛盾。因此在软体动物中可以看到两种极端现象:具有厚重外壳的砗磲(Tridaa)已经丧失运动能力,丢失了外骨骼的乌贼却获得了高速率。 (2)生长的限制。动物的软躯体的生长受到坚硬的外骨骼的限制。于是我们看到昆虫是如何艰难地“蜕皮”的,但腹足类的螺旋形壳和某些环节动物的管状壳并不影响其内的软躯体的生长。 (3)呼吸的限制。节肢动物的外壳骨骼是体表呼吸的障碍,坚硬的外骨骼也不可能进化出像陆地脊椎动物那样的“负压呼吸”系统。昆虫的气管式呼吸系统的效率较低,限制了躯体体积的增长。 人的骨骼 人的骨骼是不断更新的,而且是每天都在更新。按钙计算,成年人每天约有700mg的钙要更新,相当于每天有3~5%的骨骼溶解了。又有3~5%的新骨骼形成了。 骨骼的主要成分是磷酸钙。一般成人体内的含钙量是1000~1250g,其中99%集中在骨骼和牙齿中,其余约l%的钙,存在于细胞内、细胞外液及血液中,称混溶钙。骨骼里的钙和骨骼外的混溶钙之间,存在着一种相互转变的平衡状态,就是骨骼的钙不断溶解变为混溶钙,同时,混溶钙又不断沉积成为骨骼。在这种一面溶解骨骼又一面生成骨骼的过程中,如果钙的溶解量和钙的沉积量相等,就称作平衡状态。如果在相同时间里,钙溶解得多,而沉积得少,就会产生骨质疏松现象。人的骨骼,一般在十八岁左右长度就稳定了,也就是说不会再长高了。但是,骨的密度还要继续增加。四十岁后,骨的密度就开始显示出下降的趋势。下降的快慢,则要看人的体质情况而定。一般是体力活动多或喜好运动的人缓慢些。 人体骨骼 人体中的钙主要来自食物。许多食物都含有丰富的钙。但是,食物中的钙大部分都不能被吸收。成年人只能吸收20%左右,而80%左右的钙,仅仅是到人体内作了一次旅行,都被排泄出去了。 钙的吸收率这么低,究竟是什么原因呢?原因是多方面的。首先是维生素D对吸收的影响。维生素D的特殊本领,就是能促使小肠吸收钙和磷,使血液中钙、磷含量增高,促进骨骼的更新。当维生素D缺乏时,钙的吸收率就会降低。另外,食物中的其他成分,也能影响钙的吸收。例如,有不少蔬菜中都含有草酸,而草酸能与钙生成难溶解的草酸钙。难溶的沉淀物是不能吸收的,只能排泄出去。常见的蔬菜中,如菠菜、苋菜都含有较多的草酸。100g鲜菠菜,含606mg草酸;而100g鲜苋菜含的草酸更多,可达1142mg。如果把含钙非常丰富的豆腐和菠菜放在一起做汤,那么,豆腐中的钙,在进入人体之前,就会大受损失。身体缺钙的人,最好少吃菠菜和苋莱。除蔬菜外,谷类粮食中因含有较多的草酸,也会反应生成难溶解的钙的化合物,而影响钙的吸收。再有,年龄的大小也有关系。婴儿可以吸收食物中钙的50%以上,儿童吸收40%左右,成年人吸收约20%,40岁以上的成年人,钙的吸收率平均每10年减少5~10%。老年人的骨质会逐渐变得疏松。 根据人体对钙的需要,世界卫生组织建议每日钙的供给量:成年人为400~500mg,乳母、孕妇为1000~1200mg。我国的规定稍多一些。 在饮食方面,钙的来源以牛奶及其他奶制品为最好,不仅含量多而且吸收好。豆类制品、虾皮、蔬菜等,含钙也比较丰富。合理的调配膳食,对保障人的身体健康是十分重要的。 骨的构成 骨主要由骨质、骨髓和骨膜三部分构成,里面容有丰富的血管和神经组织。长骨的两端是呈窝状的骨松质,中部的是致密坚硬的骨密质,骨中央是骨髓腔,骨髓腔及骨松质的缝隙里容著的是骨髓。儿童的骨髓腔内的骨髓是红色的,有造血功能,随着年龄的增长,逐渐失去造血功能,但长骨两端和扁骨的骨松质内,终生保持着具有造血功能的红骨髓。骨膜是覆盖在骨表面的结缔组织膜,里面有丰富的血管和神经,起营养骨质的作用,同时,骨膜内还有成骨细胞,能增生骨层,能使受损的骨组织愈合和再生的作用。 骨头 骨骼的形态 长骨 长骨的长度远大于宽度,分为一个骨干和两个骨骺,骨骺与其他骨骼形成关节。长骨的大部分由致密骨组成,中间的骨髓腔有许多海绵骨和骨髓。大部分的四肢骨都是长骨(包括三块指骨),一些例外包括膝盖骨(膑骨)、腕骨、掌骨、跗骨和构成腕关节和踝关节的骨骼。长骨的分类取决于形状而不是大小。 脊椎骨 短骨 短骨呈立方状,致密骨的部分比较薄,中间是海绵骨。短骨和种子骨构成腕关节和踝关节。 扁平骨 扁平骨薄而弯曲,由平行的两面致密骨夹着中间一层海绵骨。头骨和胸骨是扁平骨。 不规则骨 不规则骨顾名思义是形状复杂的骨骼,不适用上面三种分类,由一层薄的致密骨包著海绵骨。脊椎骨和髋骨是不规则骨。 种子骨 种子骨是包在肌腱里的骨头,功能是使肌腱远离关节,并增加肌腱弯曲的角度以提高肌肉的收缩力,例如膑骨和豆状骨。 骨的组成 骨是由有机物和无机物组成的,有机物主要是蛋白质,使骨具有一定的韧度,而无机物主要是钙质和磷质使骨具有一定的硬度。人体的骨就是这样由若干比例的有机物以及无机物组成,所以人骨既有韧度又有硬度,只是所占的比例有所不同;人在不同年龄,骨的有机物与无机物的比例也不同,以儿童及少年的骨为例,有机物的含量比无机物为多,故此他们的骨,柔韧度及可塑性比较高,而老年人的骨,无机物的含量比有机物为多,故此他们的骨,硬度比较高,所以容易折断。 膝盖骨 骨骼功能 保护功能:骨骼能保护内部器官,如颅骨保护脑;肋骨保护胸腔。 女骨盆 支持功能:骨骼构成骨架,维持身体姿势。 造血功能:骨髓在长骨的骨髓腔和海绵骨的空隙,透过造血作用制造血球。 贮存功能:骨骼贮存身体重要的矿物质,例如钙和磷。 运动功能:骨骼、骨骼肌、肌腱、韧带和关节一起产生并传递力量使身体运动。 大部分的骨骼或多或少可以执行上述的所有功能,但是有些骨骼只负责其中几项。 骨骼数量 成人骨头共有206块,分为头颅骨、躯干骨、上肢骨、下肢骨四个部分。但儿童的骨头却比大人多。因为:儿童的骶骨有5块,长大成人后合为1块了。儿童的尾骨有4~5块,长大后也合成了1块。儿童有2块髂骨、2块坐骨和2块耻骨,到成人就合并成为2块髋骨了。这样加起来,儿童的骨头要比大人多11~12块,就是说有217~218块。医学书上说,初生婴儿的骨头竟多达305块。 男骨盆 不过,某些骨头会再生出“副骨”或“子骨”来。例如,有些人每只手和腕部有“副骨”或“子骨”来。例如,有些人每只手和腕部有“副骨”及“子骨”24块,每只脚有26块。在身体的膝、肘、脊椎部位,有时也会另外长出小骨来,不过各人额外长出的骨头多少不一样。要是把“融骨”或“子骨”算进去,成人的骨头那就远不止206块了。但由于这些“额外小骨”的意义不大,我们只要知道成人有206块骨头就行了。 当然,说成人有206块骨头,这是全球人类的“总体”而言的。人群中在这方面存在差异。我国科学工作者1985年进行的抽样调查表明,中国人的骨头要比欧美人少,大多数人只有204块骨头。而在欧美,绝大多数人有206块骨头。这是由于大多数中国人的脚上第5趾骨为2块骨头,不像欧美人有3块骨头。每只脚少1块,所以只有204块。 人体最长的骨头是股骨,即大腿骨,它通常占人体高度的27%左右,有记录的最长腿骨为75.9厘米。而耳朵里的镫骨是人体内最小的骨头,它只有0.25~0.43厘米长成年人骨的重量约为体重的1/5,刚出生的婴儿骨重量大约只有体重的1/7。 很多骨头最后是愈合在一起了。比如说颅骨,以及尾骨。成年人的尾骨只算一块,但是新生儿那里,还是可以分得开24块的。另外,因为卤门没有合并,整个颅骨当作十几块算,而成年的颅骨虽然也是当作几块算得,但是数目已经减少了很多。 另外,出生儿的骨头都是以软骨的形式存在的,其中的有一些后来并不会骨化,而是保持了软骨的状态。这样一来,这些骨头就自动消失了。 还有为了保护初生儿,人体有些部位多长了几块骨头,这些骨头以后被逐渐吸收掉了。 骨骼系统 骨骼系统通常分三种-外骨骼、内骨骼和水骨骼。但是水骨骼在分类时也可以和其他两种分开来,因为其没有坚硬的支持结构。 在生物学中,骨骼或骨骼系统是为生物体提供支持作用的生命系统。(扩展开来,非生物的轮廓结构例如桶架和建筑也具有类外骨骼) 内骨骼 由体内坚硬的组织构成,由肌肉系统提供动力。矿物质化或骨质化的内骨骼被称为骨,例如人类和哺乳动物的骨骼。软骨是骨骼系统中另一重要的组成部分,起支持和补充骨骼的作用。人的耳和鼻由软骨定型。有些动物的骨骼完全由软骨构成而没有骨质化的骨,例如鲨鱼。骨于其他坚硬的结构由韧带相互连线,而与肌肉系统之间由肌腱连线。 较高等的生物,例如哺乳类、爬虫类、鸟类等,才有内骨骼,大多数都是脊索动物门的成员。 外骨骼 在骨骼大小相同的情况下,大型的外骨骼结构与内骨骼相比所能支持的重量相对较小,因此,许多大型动物,例如脊椎动物具有内骨骼结构。外骨骼动物例如节肢动物、软体动物和一些昆虫,它们的骨骼是一层保护内部器官的壳。 节足动物和软体动物都具有外骨骼。由于外骨骼限制了动物的生长,这些外骨骼动物找到了不同的解决办法。大部分软体动物具有石灰质的壳,并且随着生长,壳的直径增大,形状不变。节肢动物在生长的过程中蜕去旧皮,这个过程称为蜕皮。生出新的外骨骼后,外骨骼通过不同的方式硬化(例如石灰质、骨质)。 水骨骼 则好像是充满水的气球。腔肠动物(例如水母、珊瑚虫等)和环节动物(例如水蛭)这些具有水骨骼的动物体腔内充满液体. 提供静水压支撑身体,能通过收缩液囊周围的肌肉实现移动,例如蚯蚓通过改变身体的形状向前移动。 相关知识 骨头可能被撞伤吗? 是的,骨头可能被撞伤。遭受一次猛烈撞击,或者不慎摔倒,有时会引起骨膜下出血。骨膜是一种纤维膜,覆盖在大多数骨头的表面,其中有血管和神经。 骨头被撞伤会引起疼痛,但是通常在几天内就痊愈。如果疼痛持续,或者活动受限制,应该去看医生,可能需要作X射线检查,以确定是否有骨折。 什么叫做有创骨折?什么叫做无创骨折? 骨折因严重受伤而起,可能是摔倒或受到猛击所致。骨头裂开或折断,而周围组织无严重损伤,皮肤也没有破损,称为无创骨折。周围组织广泛受损,折断的骨头或穿透邻近组织,凸出于皮肤之外,称为有创骨折。有创骨折的伤者易受感染,在大多数情况下需要接受外科手术治疗。若是轻微骨折,只要休息,也许再加上夹板或悬带,伤处就会自行愈合。万一伤势比较严重,得把断裂的骨片接上。断骨接好后,必须停止活动,可以敷上石膏,采用牵引装置,或使用固定针、固定板,固定骨位。 腕关节 所谓脱位?是什么原因引起的?如何治疗? 骨头离开了在关节内的正常位置,称为脱位,通常是遭受猛力打击或韧带撕裂所致;韧带是把骨头系于适当位置的组织,受到损伤就可能撕裂。 脱位通常是在运动中相互碰撞引起的,几乎可发生于任何一个关节。症状为剧痛、关节迅速肿胀、皮肤变色、无法活动,此时关节看上去变了形。要治愈脱位,必须由医生将骨头复位,然后尽可能加以固定。 肌腱和韧带有什么不同? 肌腱是坚韧的带状结缔组织,薄而结实,把肌肉系在骨上,并带动它们。韧带也是坚韧的带状结缔组织,弹性较肌腱强,把相邻的骨头连在一起,保持在适当位置。活动范围超过极限或拉扯过剧,韧带和肌腱都会受损。 腱炎是一种什么病?该怎么治疗? 腱炎是身体里许多肌腱中的某—根发炎,起因包括肌腱过劳、肌腱受伤,或者肌肉绷得太紧,以致在休息时也扯紧肌腱。通常连滑液鞘也发炎,滑液鞘的作用是保护肌腱,并且使肌腱在骨头和关节表面易于滑动。若滑液鞘也发炎,就称为腱鞘炎。 肌腱 凡肌腱连线肌肉和骨头处。都可以患上腱炎,最常见于腕、肘(网球家肘)、足跟、肩和膝。 腱炎的症状为局部疼痛、肿胀和活动受到限制。治疗的第一步是让患部休息。冰敷、服用阿斯匹林或异丁苯丙酸,可以帮助减轻疼痛和肿胀。在较严重的情况下,医生会开处方药物。 疼痛缓解后,下一步是防止肌腱僵硬;这得小心进行,否则会加重病情。患者要做些缓慢而轻柔的伸展运动,在不引起疼痛的情况下,尽可能伸展患肢,每次维持姿势至少二十秒钟。重要的是不要让患部因不活动而变得僵硬。如果在一周内疼痛和僵硬的情况没有改善,应请医生诊治。 医学上何谓扭伤?扭伤和腱炎如何区别? 扭伤是把骨头维系在一起的关节韧带部分撕裂,最常见于踝、膝以及手指关节,其他关节有时也会扭伤。轻度扭伤的症状与腱炎有些相似,两者都有局部疼痛和触痛。腱炎的症状通常变化缓慢,在发病的数天里,患部或许还能短暂负重,只是会因得不到休息而病情加重。 扭伤几乎总是由直接损伤立即引起的,伤处往往在短期内丧失功能,通常伴有青肿,需要较长时间才能痊愈。若严重扭伤,韧带完全撕裂,必须立即加以护理,可能需要几个月才能复原。 运动后的翌晨为什么有时会感到肌肉酸痛? 很可能是准备活动不足、运动过度或是这次运动之前已许久没做运动。 运动时肌肉收缩,可能使肌纤维拉扯过度;停止运动后, 肌纤维就肿胀起来,数小时后开始僵硬发痛。实际上,剧烈运动可轻微撕裂肌纤维,休息期间肌纤维肿胀,那是康复过程的一部分。 扯伤了肌肉和下肌断裂如何区分? 肌肉被扯伤和肌肉断裂,一般都是用力过度所致,但是两 者有显著区别。肌肉被过度拉扯,尤其是突然过分拉扯,某些肌纤维会撕裂,引起疼痛、肿胀和无力,称为肌肉扯伤,这是 运动员在没有充分做好准备动作时常见的损伤,一般很快痊愈。 肌腱 肌肉整条或部分脱离骨头,称为肌断裂。伤处肌肉无力,可能需动手术来修补断裂的肌肉。 扯伤了腿部肌肉,如何减轻疼痛? 扯伤了肌肉,首先应该停止引起损伤的活动,然后抬高伤腿,施以冰敷,以防止肿胀。疼痛通常会在几天内消退,伤者应让肌肉休息至疼痛消失为止。如果疼痛和肿胀严重,应该去看医生。受伤后必须走动的话,应该包扎腿部伤处以助支撑体重,或者使用拐杖,以免加剧损伤。 严重扯伤的肌肉痊愈后,不可立即恢复日常活动,应先接受物理治疗伸展肌肉加强肌肉力量。 鞭打式颈伤是怎么回事?可以治愈吗? 鞭打式颈伤通常见于汽车事故,是头部猛地向前甩,随即又向后猛甩所造成的。 伤处疼痛和僵硬,有时持续一段很长时间,情况严重的可引起脊髓断裂,导致四肢麻醉,甚至死亡。 这种颈伤最常见的是颈椎周围的肌肉和韧带被撕裂或扯伤。损伤需要几个星期才可治愈,期间伤者必须戴上特制的颈圈。损伤治愈后,肌肉的痉挛和疼痛仍可能持续一段日子。 休息、适当热敷和 *** 有助于缓解疼痛和僵硬。在某些情况下,服用止痛药和肌肉松弛剂也是有用的,但是靠这些药物可能产生赖药性。情绪紧张看来不利于康复,这可能是头部肌肉不能脱离紧张状态的缘故,所以伤者在疗伤、康复期间,应该力求放松,避免情绪紧张。 什么叫粘液囊炎?有那些症状? 粘液囊炎即粘液囊发炎。粘液囊位于骨头之间或肌腱与骨头之间,充满润滑液,以减少骨头受到的摩擦。长期的磨损和撕裂、损伤、感染,是粘液囊炎的常见起因,有些病例则没有明显的病因。粘液囊炎的症状为局部疼痛肿胀,此病常见于膝(女仆膝)、肘(学生肘)、肩、髋、足跟和拇趾基节等部位。 患者要让患处休息;如果需要,可用夹板或系带加以支撑。服用阿斯匹林或扑热息痛,外敷冰袋,可以止痛。如果三四天后疼痛不减轻,或患部活动越发困难,应该请医生诊治。严重的粘液囊炎,须用处方药物来治疗。如果患部极度肿胀,医生可在局部麻醉下抽出囊内的液体,将药物注入排空的囊内。 人体共有206块骨骼,分为颅骨、躯干和四肢3个大部分。它们分布在全身各部位,支撑著身体,保护内部器官,同时由肌肉帮忙,进行各种活动。假如没有了骨骼,人体就成了一堆肉,还能做什么呢?所以不能没有骨头。 人体所有的骨骼,从形状和大小上各不相同,有的较大,如胫骨、肱骨等,有的则很小,如趾骨等。从形状上大致可分为5种:长骨、短骨、扁骨、不规则骨和含气骨。扁平状的骨起保护内脏器官的作用,比如颅骨保护大脑等;棒状骨负责人体运动,例如四肢的骨骼等。

以上肌肉骨骼大全相关的内容 如果部分信息有影响到您的权益,请联系本站 爱美达人养生网管理员交流处理,感谢关注本站,获取更多养生美容知识,做最美的达人

相关热词:肌肉骨骼大全

热门专题